
Supplementary Material

This supplementary material is organized as follows: in
Section A we provide proofs for all the statements of the
paper and we discuss some connections with mathemati-
cal representation theory; in Section B we give details on
the datasets and prompts used for our experiments; in Sec-
tion C we present some additional experimental results and
qualitative examples.

A. Proofs

Lemma 2. 1) A collection of vectors r(Z) is linearly fac-
tored if and only if the vector difference uz � uz0 does not
depend on the components that z, z0 2 Z share in common.
2) If |Zi| = ni, then the dimension of Span(r(Z)) is at
most 1 +

Pk
i=1(ni � 1).

Proof. (1) If the vectors are linearly factored, then clearly
the vector differences uz � uz0 do not depend on the com-
ponents that z, z0 share in common since the corresponding
vectors cancel out. For the converse, fix z = (z1, . . . , zk) 2
Z arbitrarily and choose any k vectors uz1 , . . . ,uzk such
that uz = uz1 + . . . + uzk . Now for any z

0
i 2 Zi and any

i = 1, . . . , k, define

uz0
i
:= uzi + uz0 � uz,

where z
0 = (z1, . . . , z

0
i, . . . , zk).
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0
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0
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+ . . .+ (u(z1,z2,...,z0
k)

� uz) + uz

= (uz0
1
� uz1) + . . .+ (uz0
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(2) We have that
X

z2Z
�zuz =

X

z2Z
�z(uz1 + . . .+ uzk)

=
X

z2Z
�z(ūZ1 + . . .+ ūZk + ũz1 + . . . ũzk),

=
X

z2Z
�z(u0 + ũz1 + . . . ũzk),

(14)
where ūZ1 := 1

ni

P
zi2Zi

uzi and ũzi := uzi �uZi . SinceP
zi2Zi

ũzi = 0, equation 14 shows that any linear combi-
nation of the vectors uz, z 2 Z can be written as a linear
combination of 1 +

Pk
i=1(ni � 1) vectors.

Lemma 3 (Centered decomposition). If a collection of vec-
tors r(Z) is linearly factored, then there exist unique vec-
tors u0 2 V and uzi 2 V for all zi 2 Zi (i = 1, . . . , k)
such that

P
zi2Zi

uzi = 0 for all i and

uz = u0 + uz1 + . . .+ uzk , (2)

for all z = (z1, . . . , zk).

Proof. Following the proof of part 2 of the previous
Lemma, it is enough to let u0 := ūZ1 + . . . + ūZk where
ūZ1 := 1

ni

P
zi2Zi

uzi , and then re-center the remaining
vectors accordingly. For the uniqueness, we note that equa-
tion 2 implies that the vectors u0,uzi , zi 2 Zi satisfy

u0 =
1

N

X

z2Z
uz, uzi =

ni

N

X

z0=(z0
1,...,z

0
k)

z0
i=zi

uz0 �u0. (15)

where N = n1 . . . nk. In particular, equation 15 shows that
u0,uzi , zi 2 Zi are uniquely determined by the original
vectors uz .

In the previous proof, we considered a map associating
each uz, z 2 Z with the vectors given by

u0 =
1

N

X

z2Z
uz, uzi =

ni

N

X

z0=(z0
1,...,z

0
k)

z0
i=zi

uz0 � u0.
(16)

It is easy to see that if we define ũz = u0+uz1 + . . .+uzk

then applying equation 16 with the new vectors ũz in-
stead of uz yields the same components uzi . Thus, this
map can be seen as a projection onto a linearly factored
set of vectors. Note that the component vectors satisfyP

zi2Zi
uzi = 0. The following result considers a slightly

more general setting in which these components vectors sat-
isfy

P
↵zivzi = 0 for some weights ↵i that sum to 1.

Proposition 4. Let ↵zi zi 2 Zi be arbitrary positive
weights such that

P
zi2Zi

↵zi = 1, and define �z :=Q
i ↵zi for all z = (z1, . . . , zk). Then, for any norm k · k

induced by an inner product on V , we have that

argmin
ũz

X

z2Z
�zkuz � ũzk2,

s.t. {ũz} is linearly factored,
(3)

is given by ũz = u0 + uz1 + . . .+ uzk where

u0 :=
X

z

�zuz, uzi :=
1

↵zi

X

z0=(z0
1,...,z

0
k)

z0
i=zi

�zuz0 � u0.

(4)



Proof. Without loss of generality, we may assume thatP
z �zuzi =

P
↵ziuzi = 0. Imposing that the derivative

of equation 3 with respect to u0 is zero leads to
X

z2Z
�z(uz � (u0 + uz1 + . . .+ uzk))

=
X

z2Z
�z(uz � u0) = 0,

(17)

which implies u0 =
P

z �zuz. Similarly, differentiating
with respect to uzi we have

X

z0=(z0
1,...,z

0
k)

z0
i=zi

�z0(uz0 � (u0 + uz1 + . . .+ uzk))

=
X

z0=(z0
1,...,z

0
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z0
i=zi

�z0(uz0 � u0 � uzi) = 0
(18)

which implies that
X

z0=(z0
1,...,z

0
k)

z0
i=zi

�zuz = ↵zi(u0 + uzi), (19)

so uzi is as in equation 4.

Proposition 6. Let r(Z) be a set of linearly factored vec-
tors of maximal dimension. Then r is compositional for
some disentangled action of G = Sn1 ⇥ . . . ⇥Snk on V .
Conversely, if r is compositional for a disentangled action
of G, then the vectors r(Z) are linearly factored.

Proof. Let r(Z) be a set of linearly factored vectors of max-
imal dimension. If W := Span(uz, z 2 Z), then we write
V = W � W

0, and define a linear action of G on Rd by
associating each group element g = (g1, . . . , gk) with an
invertible linear transformation so that each gi determines
a permutation of the vectors uzi , while fixing other terms
and W

0. This describes a disentangled action of G, where
V = W

0 � hu0i � VZ1 � . . .� VZk (to be consistent with
the original definition, we can set V1 = W

0 � hu0i � VZ1

and Vi = VZi for i � 2).
For the converse, let ⇢ : G ! GL(V ) be any linear

action of G on V (a group representation). Writing Gî =
S1 ⇥ . . . ⇥ {e} ⇥ . . . ⇥ Sk (with the identity at the i-th
component), we define

V0 := {u 2 V : g · u = u, 8g 2 G},
Ṽi := {u 2 V : g · u = u, 8g 2 Gî}.

(20)

Since G acts linearly, these are vector spaces. We also de-
fine the linear maps

⇡0 : u 7! 1

|G|
X

g2G

g · u,

⇡̃i : u 7! 1

|Gî|
X

g2Gî

g · u.
(21)

These are linear projections onto V0 and Ṽi, respectively,
since they map onto these spaces and they fix them. We now
define ⇡i := ⇡̃i�⇡0 and Vi := Im(⇡i). Since Ṽi\ Ṽj = V0

for i 6= j, we have that Vi \ Vj = {0} for i 6= j. In general,
we now have that V0 � V1 � . . . � Vk ⇢ V ; if the action ⇢

is disentangled, however, then

V = V0 � V1 � . . .� Vk. (22)

Thus, for any v 2 V , we have v = ⇡0(v) + ⇡1(v) + . . . +
⇡k(v). Now assume that r : Z ! V is a compositional
embedding, so g · r(z) = r(g · z). We observe that uzi =
⇡i(uz) is fixed by Sj for j 6= i, and thus depends only
on zi. In fact, the expressions for ⇡0,⇡i applied to uz are
exactly the projection maps from equation 16. Thus, we can
write uz = u0 + uz1 + . . .+ uzk , which means that r(Z)
are linearly factored.

Proposition 7. In the setting described above, and assum-
ing that Span(vy, y 2 Y) = Rd, the embedding z 7! ux(z)

of Z is linearly factored in the sense of Definition 1 if and
only if there exists functions q0, . . . , qk such that

p(x(z), y) = q0(y)q1(z1, y) . . . qk(zk, y), (7)

for all z = (z1, . . . , zk) 2 Z and y 2 Y .

Proof. Assume that equation 7 holds, and let g0(y) :=
log(q0(y)) and gi(zi, y) := log(qi(z, y)). For all z 2 Z ,
we can write

log p(x(z), y) = g0(y) + g1(z1, y) + . . .+ gk(zk, y)

= ḡ0(y) + ḡ1(z1, y) + . . .+ ḡk(zk, y),

s.t.

X

zi2Zi

ḡi(zi, y) = 0, i = 1, . . . , k,

(23)
where ḡ0(y) := g0(y) +

Pk
j=1

1
nj

P
zj2Zj

gj(zj , y) and
ḡi(zi, y) := g(zi, y) � 1

ni

P
z0
i2Zi

gi(z0i, y). It is easy to
verify the following identities for i = 1, . . . , k:

ḡ0(y) =
1

N

X

z2Z
log p(x(z), y) =

1

N

X

z2Z
u>
x(z)vy + c0

= u>
0 vy + c0

ḡi(zi, y) =
ni

N

X

z0=(z0
1,...,z

0
k)

z0
i=zi

log p(x(z), y)� ḡ0(y)

=
ni

N

X

z0=(z0
1,...,z

0
k)

z0
i=zi

u>
x(z0)vy � u>

0 vy = u>
zivy,

(24)
where we used the expression for log p(x, y) from equa-
tion 6 and the definition of the terms u0,uzi from equa-
tion 16. If we now define ũx(z) := u0 + uz1 + . . . + uzk ,



then it follows from equation 24 that ũ>
x(z)vy = u>

x(z)vy(=

log p(x(z), y)) � c0) for all z 2 Z , y 2 Y . Since by
hypothesis Span(vy, y 2 Y) = Rd, we conclude that
ũx(z) = ux(z). Conversely, it is clear that if all ux(z) de-
compose as in equation 2, then p(x(z), y) has a factored
form as in equation 7 for all y 2 Y .

Corollary 8. Under the assumptions of Proposition 7, an
embedding z 7! ux(z) of Z is linearly factored if only if the
factors zi are conditionally independent given any image y.

Proof. This follows immediately from the factored form
of equation 7. More precisely, the statement means that

p̃(z | y) = p̃(z1 | y) . . . p̃(zk | y), (25)

where p̃(z | y) := 1
Zy

p(x(z) | y), p̃(zi | y) :=
1
Zy

P
zk 6=i

p(x(z) | y) and Zy :=
P

z p(x(z) | y). We
observe that equation 25 implies equation 7, since we can
write

p(x(z), y) = Zyp(y)p̃(z1|y) . . . p̃(zk|y), (26)

which has the desired factored form. Conversely, equation 7
means that

p̃(z | y) = q0(y)Z1 . . . Zk

p(y)Zy
q̃1(z1, y) . . . q̃k(zk, y), (27)

where Zi =
P

zi2Zi)
qi(zi, y) and q̃i(zi, y) = 1

Zi
q(zi, y).

Since
P

z2Z p̃(z | y) = 1, we deduce that the y-dependent
constant on the right of equation 27 is equal to 1, and
q̃i(z, y) = p̃(zi|y).

Proposition 9 (Relaxed feasibility of linear factorizations).
1) If y 2 Y is such that p(x(z), y) is mode-disentangled,
then one can replace the embedding vectors ux(z) with their
linearly factored approximations ũx(z) from Proposition 4
(for any choice of weights) and obtain the same prediction
for z given y; 2) If p(x(z), y) is order-disentangled for all
images y sampled from a distribution with full support over
the unit sphere, then the vectors ux(z) are necessarily lin-
early factored.

Proof. (1) Assume that p(x(z), y) is mode-disentangled.
Then we have that

argmax
zi2Zi

u>
(zi,z�i)

vy

= argmax
zi2Zi

u>
(zi,z0

�i)
vy

= argmax
zi2Zi

X

z0=(z0
1,...,z

0
k)

z0
i=zi

u>
z0vy

= arg max
zi2Zi

u>
zivy

(28)

where uzi is as in equation 16, or as in the weighted version
from equation 4. This implies that we can perform inference
using the linearly factored approximations ũx(z) instead of
the original vectors.
2) We will use the notation z = (zi, zj , z�{i,j}) where
z�{i,j} := (z1, . . . , zi�1, zi+1, . . . zj�1, zj+1, . . . , zk). If
p(x(z), y) is order-disentangled for y, then for any zi, z

0
i 2

Zi and zj , z
0
j 2 Zj

(u(z0
i,zj ,z�{i,j}) � u(zi,zj ,z�{i,j}))

>uy � 0

, (u(z0
i,z

0
j ,z�{i,j}) � u(zi,z0

j ,z�{i,j}))
>uy � 0,

(29)

and similarly

(u(zi,z0
j ,z�{i,j}) � u(zi,zj ,z�{i,j}))

>uy � 0

, (u(z0
i,z

0
j ,z�{i,j}) � u(z0

i,zj ,z�{i,j}))
>uy � 0.

(30)

If these relations hold for any vector uy , then it means that

u(z0
i,z

0
j ,z�{i,j}) � u(zi,z0

j ,z�{i,j})

= �(u(z0
i,zj ,z�{i,j}) � u(zi,zj ,z�{i,j}))

u(z0
i,z

0
j ,z�{i,j}) � u(z0

i,zj ,z�{i,j})

= µ(u(zi,z0
j ,z�{i,j}) � u(zi,zj ,z�{i,j}))

(31)

for some positive scalars �, µ 2 R. It follows from
Lemma 11 below that either all four points in equation 31
are aligned, or � = µ = 1. However, we can exclude
that all four points are aligned for otherwise the largest
between p(x(zi, zj , z�{i,j}), y) and p(x(z0i, zj , z�{i,j}), y)
would determine the largest among p(x(zi, zj , z�{i,j}), y)
and p(x(zi, z0j , z�{i,j}), y), i.e., the factors Zi,Zj would
not be distinct. (Technically, we can assume in our defini-
tion of “factors” that all possible rankings of values of Zi

are possible for any choice of z�i). Thus, � = µ = 1
in equation 31 for all zi, z

0
i, zj , z

0
j . This implies that

u(zi,z�i) � u(z0
i,z�i) does not depend on z�i, which in

turn means that the vectors uz are linearly factored, since
uz � uz0 does not depend on components that z, z0 have in
common.

Lemma 11. If p, q, r, s 2 Rd are such that

p� q = �(r � s), p� r = µ(q � s), (32)

for some scalars �, µ 2 R, then either p, q, r, s lie on
the same affine line (i.e., all pairwise differences are scalar
multiples of each other) or � = µ = 1.

Proof. Substituting p = q+�(r�s) in the second equality
in equation 32 yields

(1� µ)q + (�� 1)r + (µ� �)s = 0. (33)

If µ 6= 1 or ⌫ 6= 1, then this shows that p, r, s are aligned
(note that coefficients sum to 1). Using the relation for p,
we conclude that either µ = ⌫ = 1 or all four points are
aligned.



We conclude this section by elaborating on the connec-
tion with mathematical representation theory. This dis-
cussion is not necessary for understanding the paper, but
we believe that the symmetry-based viewpoint introduced
in [26] is a useful framework for studying disentanglement
and compositionality in machine learning. For convenience
to the reader, we include here a minimal set of definitions
and basic results from representation theory, focusing on the
representation of finite groups. More details can be found,
for example, in [21].

A representation of a group G is a homomorphism ⇢ :
G ! GL(V ), where V is a finite-dimensional vector space
(typically over the complex numbers, but we can focus on
the the real setting here). Often the map ⇢ is omitted and
the representation is identified with V . It also common to
say that V is a “G-module” or a “G-representation.” Given
two G-representations V,W , a homomorphism of represen-
tations is a linear map ' : V ! W that is G-equivariant:

'(g · v) = g · '(v), 8g 2 G, v 2 V. (34)

A subrepresentation (or submodule) of a G-representation
V is a vector subspace H ⇢ V such that is G-invariant:

g(h) 2 H, 8g 2 G, h 2 H. (35)

If ' : V ! W is a homorphism of representations, then the
kernel and image of ' are subrepresentations of V and W ,
respectively. A G-representation of V is irreducible if it has
no proper subrepresentations, i.e., if its only subrepresenta-
tions are {0} and itself.

Example 12 (Trivial representation). Let G be any group
and let V = R be a one-dimensional vector space. Then
the map ⇢ : G ! GL(V ) that every element of G with
the identity on V is an irreducible representation, called the
trivial representation.

Example 13 (Permutation representation). Let V = Rn

and consider the representation ⇢ : Sn ! GL(V ) that per-
mutes coordinates. This is not an irreducible representa-
tion since the one-dimensional subspace V0 = h(1, . . . , 1)i
is a subrepresentation (a “copy” of the trivial representa-
tion). In fact, we have that V = V0 � V1 where V1 =
{v : v1 + . . . + vn = 0}. One can show that V1 is irre-
ducible, and it is called the standard representation of Sn.

The next statements imply that, for finite groups, ir-
reducible representations can always be used as “build-
ing blocks” for describing arbitrary representations. The
irreducible components of a representation are (nearly)
uniquely determined; moreover, there are only finitely many
irreducible representations of a group up to isomorphism.

Proposition 14 (Corollary 1.6, [21]). If G is a finite group,
any G-representation can be decomposed as a direct sum of
irreducible representations.

Proposition 15 (Proposition 1.8, [21]). Let V be a G-
representation, and consider its decomposition into irre-
ducible representations:

V = V
�a1
1 � . . .� V

�ak
k . (36)

Then the spaces V
�ai
i are uniquely determined. The ir-

reducible representations Vi are determined up to isomo-
prhism.

Proposition 16 (Corollary 2.18, [21]). Every finite group
only has a finite set of irreducible representations, up to
isomorphism.

For example, the irreducible representations of a sym-
metric group Sn are in one-to-one correspondence with the
(unordered) partitions of n elements. See [21, Chapter 4]
for an explicit description.

We now return to our factored set Z = Z1 ⇥ . . . ⇥ Zk.
We consider the vector space hZi = Span(ez : z 2 Z),
spanned by independent basis vectors associated with ele-
ments of Z . We can identify hZi with the space Rn1⌦. . .⌦
Rnk . As Si-modules, Rni ⇠= V0,ni � V1,ni where V0,ni is
a trivial representation and V1,ni is the standard representa-
tion for Si. We thus have that

hZi ⇠=
kO

i=1

(V0,ni � V1,ni)

⇠=
M

✏i2{0,1}

V✏1,n1 ⌦ . . .⌦ V✏k,nk

⇠=
M

✏2{0,1}k

V✏,

(37)

with V✏ := V✏1,n1 ⌦ . . . ⌦ V✏k,nk . This is a decomposition
of hZi into irreducible G-representations (see [21, Exercise
2.36]). We can describe the projection ⇡✏ onto V✏ explicitly

⇡✏ = ⇡✏1,n1 ⌦ . . .⌦ ⇡✏k,nk , (38)

where ⇡✏,ni : Rni ! Rni are given by

⇡0,ni(u) :=
1

|Si|
X

g2Si

g · u,

⇡1,ni(u) := u� ⇡0,ni(u).

(39)

A data embedding r : Z ! Rd can be uniquely associ-
ated with a linear map hri : hZi ! Rd or can equivalently
be viewed as a tensor in [r] 2 Rn1 ⌦ . . . ⌦ Rnk ⌦ Rd.
The image of hri is a G-module in Rd and its decompo-
sition will contain a subset of the irreducible components
in equation 37. The notion of disentangled representation
given in [26] means that the only irreducible components
that contribute to the image of r are the representations V✏

such that ✏i = 1 for at most one index i. Equivalently, we



require that the projection of the image of r onto the “en-
tangled components” is zero, i.e., ⇡✏(uz) = 0 whenever
|{i : ✏i = 1}| > 1. An intuitive way to understand this no-
tion is in terms of the tensor [r] 2 Rn1⌦. . .⌦Rnk⌦Rd: we
require that each of the d “slices” Rn1 ⌦ . . . ⌦ Rnk can be
obtained by summing “one-dimensional slices” of the form
1⌦. . .⌦ui⌦. . .⌦1 (similar to summing vectors into a ten-
sor by “array broadcasting”). In fact, this observation leads
to the following characterization of linear factorization in
terms of tensor-rank.

Proposition 17. A tensor [r] 2 Rn1 ⌦ . . . ⌦ Rnk ⌦ Rd

corresponds to a linearly factored representation if and only
if all (Rn1 ⌦ . . .⌦Rnk)-slices of exp([r]) have tensor-rank
one, where exp([r]) is obtained from [r] by exponentiating
element-wise. This is true if and only if for all ' 2 (Rd)⇤
exp('([r])) has tensor-rank one.

Proof sketch. The first claim follows from
the previous discussion and the fact that
exp (

P
i 1⌦ . . .⌦ ui ⌦ . . .⌦ 1) = exp(u1) ⌦ . . . ⌦

exp(uk). For the second statement, we note exp(t) having
rank-one is a linear condition on a tensor t.

For categorical distributions of multiple variables, the
distribution tensor having rank equal to one corresponds to
statistical independence of variables, so the result above can
be seen as an algebraic reformulation of Proposition 7 in the
main body of the paper. We also note that that other proba-
bilistic conditions could be considered by allowing for more
irreducible components in from equation 37 to appear in the
image of r. This is similar to the log-linear representations
of multivariate data. In fact, it is possible to express any
conditional independence assumption on p(Z|Y) in terms
of linear-algebraic conditions on the data representation r.

B. Experimental Details

Datasets. The MIT-states dataset [28] contains images
of 245 objects modified by 115 adjectives, for a total of
28175 classes. The test set has size 12995. The UTZap-
pos dataset [50] contains images of 12 shoe types with 16
fine-grained states. The test set has size 2914. Note that
in both of these datasets only a small portion of all pos-
sible attribute-object pairs actually occurs in the test set.
However, in our experiments we assume that we do not
have access to this information. We also mention that prior
works that have used these datasets such as [35, 38] have
differentiatied between the performance on label pairs that
were seen in training and those that were not. Since this
distinction is not relevant in a zero-shot setting, we sim-
ply report accuracy on objects, attributes, and attribute-
object pairs. In the Waterbird dataset [44] labels are “wa-
terbird/landbird” and spurious attributes are “water back-
ground/land background.” There are 5794 test samples di-

Class Prompts

This is a picture of a landbird.
This is a picture of a waterbird.

Spurious Prompts

This is a land background. This is a picture of a forest.
This is a picture of a moutain. This is a picture of a wood.
This is a water background. This is a picture of an ocean.

This is a picture of a beach. This is a picture of a port.

Table 4: Prompts for Waterbird dataset [44] from [11].

vided in four unbalanced groups. On the CelebA [33],
labels are “not blond/blond” and spurious attributes are
“male/female.” There are a total 19962 test samples with
unbalanced groups. The DeepFashion2 dataset [23] with
the captions provided in PerVL [14] contains 1700 images
from 100 unique fashion items. Following [14] val/test
splitting, we retrieve 50 of these concepts selected for test-
ing. We use 5 randomly chosen images per fashion item
as per-concept supporting images, and use a test set with
221 images containing all 50 concepts and their captions
(see [14] for more details). Final results are obtained by
averaging the Mean Reciprocal Rank metric over 5 random
seeds.

Prompts. For MIT-States and UTZappos, we use the
prompt “image of a [a][o],” “image of a [a] object,” and
“image of a [o],” as explained in the main body of the pa-
per. Here [a] and [o] are the lower-case original class la-
bels.3 For our experiments on debiasing on the Waterbirds
and CelebA datasets we use the same prompts and spuri-
ous attributes used in [11]. These are shown in Tables 4
and 5. To compute debiased prompts we simply prepend all
spurious prompts to each class prompts and then average
the spurious prompts to obtain debiased class prompts (note
that spurious prompts are “balanced” in their bias); this sim-
pler but conceptually similar to the “Orth-Proj” approach
used in in [11] that computes an orthogonal projection in
the orthogonal complement of the linear space spanned by
the spurious prompts. We do not make use of the “positive
pairs” of prompts that are used in that work for regulariza-
tion of the projection map.

C. Additional Results and Discussions

Quantifying linear compositionality. Given a set of vec-
tors uz, z 2 Z in Rd, we can measure how close the vectors

3In the case of objects for UTZappos, we perform a simple split
‘Boots.Mid-Calf’ ! “boots mid-calf”



Class Prompts

A photo of a celebrity with dark hair.
A photo of a celebrity with blond hair.

Spurious Prompts

A photo of a male. A photo of a male celebrity.
A photo of a man. A photo of a female.

A photo of a female celebrity. A photo of a woman.

Table 5: Prompts for CelebA dataset [33] from [11].

IW RW Avg

MIT-States [28] 0.23 ± 0.05 0.43 ± 0.06 0.78 ± 0.13
UT Zappos [50] 0.16 ± 0.04 0.51 ± 0.05 0.58 ± 0.18

Table 6: Quantifying compositionality using a trained en-
coder.

IW RW Avg

MIT-States [28] 0.04 ± 0.02 0.16 ± 0.02 0.10 ± 0.03
UT Zappos [50] 0.10 ± 0.02 0.22 ± 0.04 0.14 ± 0.05

Table 7: Quantifying compositionality using a randomly
initialized encoder.

are to being linearly factored by using

D(uz, z 2 Z) := min
ũz

1

|Z|
X

z2Z
kuz � ũzk2,

s.t. {ũz} is linearly factored.
(40)

The optimal vectors ũz here are the ideal word approx-
imations given by Proposition 4. In Table 6, we report
this quantity for embeddings of objects-attributes in the
datasets MIT-States [28] and UT Zappos [50] (IW column).
For comparison, we also include the average squared dis-
tance between the original embeddings and the average of
the individual object and attribute embddings based on “real
words” (RW column), and the average squared distance be-
tween pairs of the original embedding vectors (Avg). In Ta-
ble 7, we report the same quantities but using embeddings
obtained from a randomly initialized encoder. These results
suggest that embeddings at initialization are already compo-
sitional. We discuss this point further in the next paragraph.

Visualized embeddings. We present more examples of
projected embeddings of composite strings. In Figure 4,
we consider again the four manually constructed examples
from Figure 2 in the main body of the paper: “a photo of
a {red, blue, pink} ⇥ {car, house}”; “a photo of a {big,
small} ⇥ {cat, dog} ⇥ {eating, drinking}”; “{a photo of
a, a picture of a} ⇥ {place, object, person}”; “king, queen,

man, woman, boy, girl.” The top row of Figure 4 is the same
as the top row from Figure 2. In the bottom row of 4, we
visualize the embeddings of the same strings using a ran-
domly initialized text encoder. In the first three examples,
the factored structure is also syntactic, i.e., it is based on
the string structure. In these cases, the embeddings remain
roughly linearly factored even with random encoder. In the
last case, however, linearly factored structures are not vis-
ible anymore, since the strings in this example contain no
repeated substrings. Note also that in third case, the factor
corresponding to {a photo of a, a picture of a} is no longer
“squashed” since these two strings not considered similar
by the randomly initialized encoder.

We show other examples of this effect in Figure 5. Here
each pair of plots shows projections of the same strings us-
ing a trained encoder (left figure) and a randomly initial-
ized encoder (right figure). As one might expect, for strings
corresponding to capital-country relation (first row), the ap-
proximate symmetries that can be seen in the embbedings
from the trained encoder are no longer present when using
the random encoder. The strings in the second row, how-
ever, have a synctatic factored structure. In this case, we
visually observe strong symmetries in the embeddings from
the trained encoder as well as from the random encoder.

In Figure 6, we consider 2D projections of embeddings
of factored strings that include idioms such as “cold shoul-
der,” “big apple”, “black friday,” “hot pepper.” We compare
these embeddings with those of similar factored strings in
which meanings of words are more conventional and uni-
form. In both cases, we quantify the amount of linear com-
positionality both visually and using the squared residual as
in equation 40. The results confirm the natural intuition that
linear compositionality is measurably weaker when strong
contextual effects between words are present.

Other notions of probabilistic disentanglement. Propo-
sition 7 shows that linear factorization of embeddings corre-
sponds to conditional independence of factors zi given the
image y. One might also consider a different sort of proba-
bilistic disentanglement in which conditionals are reversed:

p(y|z = (z1, . . . , zk)) = p(y|z1) . . . p(y|zk)q0(y). (41)

This can be viewed as a sort of “causal disentanglement”
(similar to the notion used in [48]). It follows from Corol-
lary 8 that linearly factored embeddings mean that

p(y|z) = p(y|z1) . . . p(y|zk)p(y)1�k p(z1) . . . p(zk)

p(z1, . . . , zk)
.

(42)
Thus, conditional independence has the same form as equa-
tion 41 up to the factor p(z1)...p(zk)

p(z1,...,zk)
(pointwise mutual infor-

mation) that does not depend on y. If factors are globally



Figure 4: Projected embeddings of manually constructed
strings associated with factored concepts, as described in
Section 5 in the main body of the paper. Top: trained en-
coder (same as in Figure 2). Bottom: visualization of the
embeddings for the same strings using a randomly initial-
ized encoder. Even without semantic information, the em-
beddings in the first three examples are still roughly linearly
factored.

Figure 5: Comparison between projected embeddings us-
ing a trained encoder (left figure in each pair) and using a
randomly encoder (right figure in each pair). Both encoders
lead to symmetric structures when the strings have a fac-
tored syntax (bottom row), while only the trained encoder
shows these approximate structures when the factorization
is semantic (top row).

independent, then equation 42 and equation 41 are equiva-
lent. It is also worth noting that equation 41 does not de-
termine the marginal distribution p(z = (z1, . . . , zk)). In
general, linear factorization of the embeddings can be seen
as a relaxed version of causal disentanglement.

Normalization. Embedding vectors for CLIP are typi-
cally normalized, however ideal word vectors are never
normalized. While this may appear strange, we note that
the norm of the embeddings does not carry a probabilis-
tic meaning: we can replace the embeddings u,v from the
two modalities with Tu and T�1v for any invertible linear

Figure 6: Comparison between projected embeddings for
factored strings with and without idioms that have non-
compositional meaning (left and right in the subfigures, re-
spectively). We can qualitatively and quantitatively see that
idioms lead to weaker compositionality.

transformation T of Rd without changing the probability
model on X ⇥ Y . In general, ideal word manipulations re-
quire starting from normalized embeddings for consistency
between modalities, but then normalization is never applied
again (in fact, the inner product structure on the embedding
space is not used). This explains our modification to the
AvgIm+Text approach in Section 5 in the paper.

Visualizations using SD. We present a few additional vi-
sualizations of ideal words using Stable Diffusion. In Fig-
ure 7, we consider the same ideal word approximation as in
Figure 3 in the main body of the paper and observe the effect
of scaling the ideal word corresponding to “green.” That is,
we consider u0 +uhouse + � ·ugreen for different �. In the
top row, we compute ugreen using the standard “balanced”
computation for ideal words (uniform ↵i in Proposition 4).
In the bottom row, we use weights ↵house = 1 and ↵obj = 0
otherwise. This implies that the IW corresponding to ugreen

is determined by how “green” composes with “house.” Am-
plifying ugreen now increases the “greenhouse-ness” of the
generated image.

In Figure 8, we consider the problem of transferring
ideal words. That is, we consider a different (i.e., to-
tally disjoint) set of objects and colors compared to the
ones used for Figure 3 in the paper and compute the cor-
responding ideal words, that we write as ucolor0 object0 ⇡
u0
0+u0

color0+u0
obj0 . We then investigate whether families of

ideal words computed independently can be “mixed,” com-
bining ideal words for colors from the first collection and
ideal words for objects from the second one, and vice-versa.
Figure 8 shows that this is possible, at least in our restricted
setting. In the first row, we show examples of four new ob-
jects with different colors computed by adding associated
ideal words ({white, pink, orange, black} ⇥ {chair, wallet,
shirt, pen}). In the next two rows, we use the ideal words



Figure 7: Scaling the ideal word ugreen a by factor � =
.5, 1, 1.5, 2, respectively. Top: ugreen is computed using
all objects as contexts. Bottom: ugreen is computed only
“house” as context.

for objects with the ideal words for colors obtained previ-
ously; in the last two rows, we use the ideal words for the
new colors together with the ideal words for the objects ob-
tained previously. To obtain all of these images, we simply
used ucolor0 object ⇡ (u0 + u0

0)/2 + u0
color0 + 2 · uobj (we

found that amplifying the ideal words for objects helps en-
sure that objects are more centered). Analyzing the limits
of this sort of transferability is left for future work.

Finally, in Figure 9 we generate images with ideal words
while also using a third “context” factor, in addition to the
ones corresponding to color and object (for those we use
the same colors and objects as in Figure 3). Here we see
that linear compositionality is effective using simple con-
texts such as {on the beach, on a street} (first two rows),
however using more complex contexts such as {underwater,
in a volcano} (third and fourth row) it fails to produce good
results.

Figure 8: Transferring ideal words. Top row: Images gen-
erated ideal words for a different set of colors and objects
compared to the ones used Figure 3. Second and third rows:
images generated by adding new ideal words for objects
with the previous ideal words for colors; Fourth and fifth
rows: images generated by adding new ideal words for col-
ors with the previous ideal words for objects.



Figure 9: Images generated using ideal words with three
factors: color, object, context. First two rows: using context
factor {on the beach, on a street}; Second two rows: using
context factor {underwater, in a volcano}.


