
Supplementary for Persistent-Transient Duality: A Multi-mechanism Modeling
for Human-Object Interaction

Hung Tran1, Vuong Le2, Svetha Venkatesh1, Truyen Tran1

1Applied AI Institute, Deakin University, 2Amazon
{tduy, svetha.venkatesh, truyen.tran}@deakin.edu.au, levuong@amazon.com

In this supplementary material, we provide extra details
and analysis of the proposed Persistent-Transient Duality
concept and models. They include:

1. Dataset and experiment settings.
2. Model size comparison.
3. Detailed numeric performance results.
4. Extra visualizations.
5. Analysis of the impact of the post-dating window

sizes.
6. Additional analysis on the egocentric property in

WBHM
7. Ablation studies on Bimanual Action Dataset
8. Generalization analysis on Bimanual Action Dataset
9. The effectiveness of Persistent-Transient Duality in

Trajectory Prediction

1. Dataset and experiment settings
1.1. Whole-Body Human Motion Dataset

Dataset details. We retrieved the WBHM dataset using
the provided API1 [7]. The retrieving process involves se-
lecting videos that contain at least one human entity and a
table. Our retrieved dataset includes 233 videos with 20 dif-
ferent object types, which is a bigger version of the dataset
used in the previous work [2] (190 videos, 15 object types).
Among 233 videos in our WBHM dataset, 215 contain 1
human and 18 with 2 humans. The moving space of a hu-
man in a video ranges from 0.1m to 3.6m, average at 1.02m
and with the median of 0.97m. These statistics indicate that
this dataset covers a wide natural motion variety of HOI ac-
tivities, hence caompatible with the PTD model.

The raw features are stored in C3D files, each of which
contain the 3D motion of humans and objects in a video.
From the raw features, we extracted skeletal vectors of 18
joints (x ∈ R54) to represent human entities, and 3D bound-
ing box vectors of 8 vertices (x ∈ R24) to represent ob-
ject entities, sampled at 10Hz, consistent with the compared
method [2]. The selected joint positions are shown in Fig. 1

1https://motion-database.humanoids.kit.edu/faq/#access methods
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2. back head(LBHD)

4. left shoulder(LSHO)

10. back end (L3)

12. right hip(RHIP)

14. right knee(RKNE)

16. right heel(RHEE)

18. right toe(RTOE)

6. left elbow(LAEL)

8. left wrist(LWTS)

1. forehead(LFHD)

3. neck end(C7)

5. right shoulder(RSHO)

11. left hip(LHIP)

13. left knee(LKNE)

15. left heel(LHEE)

17. left toe(LTOE)

7. right elbow(RAEL)

9. right wrist(RWTS)

Figure 1: Human Visual Feature in WBHM is a vector of
18 3D joints.
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1. left shoulder(LShoulder)

3. left elbow(LElbow)

5. left wrist(LWrist)

7. left hand box

Left entity

2. right shoulder(RShoulder)

4. right elbow(RElbow)

6. right wrist(RWrist)

8. right hand box

Right entity

Figure 2: Human Visual Feature in Bimanual Action
Dataset. In this dataset, each arm is a separate human en-
tity. The visual feature of entity is a concatenation of the
arm keypoints and the hand bounding box.

Network parameters and settings. We used GRU in
both Persistent Channel, Transient Channel. In Persistent
Channel, the human and object GRUs has the hidden states
of 512 and 128 dimensions, respectively. Similarly, 512
and 128 are also the dimension sizes of the center and leaf
GRUs in the Transient Channel. The Transient-Persistent
messages and the entities’ raw features are embedded into
64-dimensional vectors. In the Transient Channel, the cen-
troid of the human entity is chosen to be the center of the
bounding box around the skeleton (See Fig. 3).

All experiments were conducted on a single GPU
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(b) Bimanual Action Dataset

Figure 3: Egocentric representations of Transient Channels
in WBHM and Bimanual Action Dataset.

NVIDIA Tesla V100 32GB installed on a server of 256 pro-
cessors and 1024 GB of memory running on Ubuntu 20.04.4
LTS. The network is implemented in Python 3.8.5 with Py-
Torch 1.7.1 and Deep Graph Library (DGL) 0.5.3 [11]. Our
models were trained with the batch size of 128 and opti-
mized by the Adam optimizer [4] with the initial learning
rate of 0.002, which decreases by 3% every 5 epochs. We
first trained our model with teacher-forcing for 100 epochs,
then fine-tuned it with unrolling mechanism for 200 epochs.
The experiments were managed and recorded using Hydra
[12]. The full implementation will be made publicly avail-
able upon acceptance.

Evaluation metrics are the average errors of humans and
objects across all prediction time steps. The error of the ith

entity is formulated as:

1

L ·Mi

T+L∑
t=T+1

Mi∑
j=1

∥∥ŷti,j − yti,j
∥∥
2
, (1)

where L is the number of prediction steps and Mi is the
number of 3D points in the visual feature of the ith entity.
We have Mi = 18 for human entities and Mi = 8 for ob-
ject entities. The average error metric of the human entity
is equivalent to the standard Mean Per Joint Position Error
(MPJPE) metric commonly used in the motion forecasting
literature.

1.2. Bimanual Action Dataset

Dataset details. We represent a human entity as the con-
catenation of a 3-point arm joints (shoulder, elbow, wrist)
and a hand bounding box, resulting in a 10-dimension vec-
tor (See Fig. 2). An object entity is represented as concate-
nation of the one-hot object type vector and the 2D bound-

WBHM Bimanual Action

GRU 3.64M 3.42M

CRNN-OPM 3.69M 3.47M

CRNN-OPM-LI 3.73M 3.50M

STS-GCN 2.16M 2.13M

MotionMixer 4.35M 4.27M

PTD (Ours) 3.68M 3.42M

Table 1: Model size comparison.

ing box location (x ∈ R4). These features are sampled at
10Hz, similar with the those in WBHM.

Network parameters and settings. In this experiment,
we re-use the model hyper-parameters in WBHM and
choose the centroid of the human entity to be the center of
the bounding box around the arm (See Fig. 3).

The system and Python environment are also similar to
those in WBHM. We use the batch size of 64 and the Adam
optimizer with the initial learning rate of 0.0015, decreasing
by 3% every 5 epochs. Our models were first trained using
teacher forcing for 10 epochs and then were fine-tuned for
50 epochs.

Evaluation metrics are defined in Eq. (1) with Mi =
3 for human key points and Mi = 2 for hand and object
bounding boxes.

2. Model size comparison
To accurately estimate the contribution of the new mod-

eling scheme, we measure the size of the models using the
number of parameters. These measurements are reported in
Tab. 1.

The comparable size of PTD with other models confirms
that the superior performance of PTD is caused by the pro-
posed modeling scheme, not by the increase in computation
power.

3. Detailed numeric performance results
The quantitative performance in WBHM Dataset. We
extend the average results in Tab. 2 of the main paper and
report the errors at each time step in Tab. 5 (for humans)
and Tab. 6 (for objects).

The quantitative performance in Bimanual Action
Dataset. The errors at each time of humans and objects
in Bimanual Action Dataset are also reported in Tab. 7 and
Tab. 8.



4. Extra visualizations

WBHM Dataset We extend the visualizations in Fig. 5,
Fig. 6 of the main paper, plotting additional qualitative ex-
amples to Fig. 7, Fig. 8 below. The illustrations in Fig. 10
further demonstrate the superior performance of PTD in
WBHM dataset compared to the single-mechanism CRNN-
OPM-LI [2], whereas those in Fig. 8 exhibit the operation
of the Switch Module in different HOI scenarios.

Additionally, in Fig. 9, we demonstrate the controllabil-
ity of the Transient switch, forcing it to not turn on where
it naturally does. The visualization shows that the model
seems to accept this intervention, and reasonably forecast
the motion as if the agent changes their mind. This idea
opens a wide road for exploration into counterfactual and
intervention modeling.

Bimanual Action Dataset We also provide qualitative
examples of the models in Bimanual Action Dataset in
Fig. 10, Fig. 11, demonstrating the superior performance
of PTD compared to CRNN-OPM-LI (Fig. 10), and show-
ing the operations of the Switch Module (Fig. 11) in this
dataset.

5. The effects of the post-dating window size

We vary the value of the post-dating window size ω (Eq.
14, main paper) and measure its impact on the model perfor-
mance. As plotted in Fig. 4, the model achieves the best re-
sult when we train the switch module to anticipate the next
0.1 seconds (1 time steps) in both WBHM and Bimanual
Action Datasets.

6. Additional ablation analysis on the egocen-
tric property in WBHM

We provide the additional ablation analysis on the effec-
tiveness of different aspects of the egocentric property in
WBHM in Tab. 2. They include:

1. Without the Egocentric representation. We take
off the transformation to egocentric system and have Tran-
sient channels running on the global features. This ablation
results in weaker performance, especially in human predic-
tion.

2. Without the Egocentric computational structure.
We then study the importance of the egocentric graph struc-
ture by replacing it with a densely connected graph. This
results in even worse performance in both human and ob-
ject prediction.

3. Without both egocentric, the network cannot adapt
to the perspective change when the human starts to interact
with objects, resulting in a significant drop in performance.

Ablation Human Obj

1 w/o egocentric rep. 86.10 70.70
2 w/o egocentric struct. 86.20 71.90
3 w/o egocentric property 87.90 72.30

Full PTD model 85.53 70.69

Table 2: Ablation studies in Bimanual Action Dataset.

7. Ablation studies on Bimanual Action
Dataset

We examine the roles of PTD’s core components by
making ablations from the model. The performances on Bi-
manual Action Dataset are reported in Tab. 3. They include:

1. Without Transient channel. We turned off Transient
Channel. Being alone, Persistent Channel performs signif-
icantly worse than when in pair with its Transient partner,
showing the significance of the duality.

2. Without Persistent channel. Here we instead look at
the performance of the Transient Channel alone. It also has
much worse performance than the full duality.

3. Without Egocentric representation. We take off the
transformation to egocentric system (Eq. 5, main paper)
and have the model running on the global features. This
ablation hurts the performance proving the appropriateness
of egocentric representation for the Transient process.

4. Without Egocentric computational structure. We
then replace the egocentric computational structure (Eq. 4,
main paper) with a fully-connected graph. This also has a
detrimental effect on the model’s performance.

5. Without both Egocentric egocentric aspects, the
model has worse performance than when each individual
aspect is removed.

6. Heuristic switch. This experiment probes the need
for the Transient Switch by replacing it with a heuristic rule.
This hard-coded switch can still make use of the duality and
have better performance than the single Persistent channel
(row 1). However, being too stiff, it cannot represent the
switching patterns and failed to reach the full potential of
the duality (row 0).

7. Switch without spatial discount factor. Without
the discount factor γt

i (Eq. 10, main paper), the Transient
Switch module could not respond fast enough to immediate
social interaction development, resulting in slightly weaker
performance.

8. Switch with only discount factor. However, this
quick change factor could not do the job by itself because
it is susceptible to noisy patterns in crowded scenes. This
results in an even worse performance than in case 4.

9. Without switch loss. We study the role of the switch’s
direct supervision (Sec 3.7, main paper) by setting switch
loss weight λ = 0. This unsupervised switch only relies on



(a) WBHM (b) Bimanual Action Dataset

Figure 4: The effect of the post-dating window size ω on the model performance. The model achieves the best results when
anticipating future interaction in the next 0.1 seconds (ω = 1) in both WBHM and Bimanual Action datasets.

Ablation Arm Keypoints Hand BoxObj

1 w/o Transient channel 12.1 19.1 7.1
2 w/o Persistent channel 13.3 19.5 8.0
3 w/o egocentric rep. 11.0 19.0 6.9
4 w/o egocentric struct. 11.1 19.1 7.0
5 w/o both egocentric 11.3 19.4 7.0
6 w/ heuristic switch 11.2 19.3 7.2
7 w/o γ 11.0 18.8 6.8
8 w/ only γ 11.0 19.0 6.8
9 w/o switch loss 12.0 19.1 7.1

10 w/o multistage training 11.1 18.9 7.0

Full PTD model 10.9 18.8 6.8

Table 3: Ablation studies in Bimanual Action Dataset.

weak gradient flowing back from prediction loss and deliv-
ers significantly weakened performance.

10. Without multistage training. Finally, we study the
impact of the multistage training Sec 3.7, main paper) on the
model performance. Without such a training procedure, the
model suffers from accumulating losses during early epochs
and capture less accurate motion pattern, resulting in a de-
crease in the model performance.

8. Generalization analysis on Bimanual Action
Dataset

We compare the performance of PTD and other models
on test sequences of lengths different from the ones used in
training: (1) observation length T varies, (2) prediction
length L varies.

The results are measured as the total average error (pixel)
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(a) Keep L = 10, vary T (b) Keep T = 20, vary L

Model name

CRNN-OPM-LI

GRU

CRNN-OPM

Ours

Training lengths
obs  (T) :  20
pred (L) :  10

Figure 5: Generalization analysis on Bimanual Action
Dataset

of human and objects. As shown in Fig. 5, PTD consistently
outperforms other baselines in both generalization scenar-
ios.

9. Additional application: Trajectory predic-
tion

The PTD modeling is generic and applicable to a wide
range of human motion modeling tasks. We demonstrate
this universality by trialing it on Pedestrian Trajectory (Ped-
Traj) prediction. For this purpose we will only use the
single-prediction setting. The extension to multi-prediction
setting can be done and is outside the scope of this supp.

Adaptation to Trajectory Prediction. In PedTraj set-
ting, all entities are of class human. Their features {xt

i}
T
t=1

and predicted output {yti}
T+L
t=T+1 are sequences of 2D pedes-

trian coordinates. The implementation modification in-
cludes:

1. For Persistent channel, we use a Goal-driven Trajec-
tory Prediction Network (GTP) [10] that estimates the long-
term intention of the pedestrian on selecting the destinations
in the scene.



2. The Transient channel is similar to the one for HOI-M
in Sec. 3.4, main paper, except that the geometrical dis-
tances in Eq. 4, main paper include both relative distances
and directions between pedestrians. The egocentric trans-
formation fego (Eq. 5, main paper) now includes both trans-
lation, rotation, and scaling.

Experiment setting. We use the popular ETH and UCY
datasets[8, 5] preprocessed into world coordinates[3]. We
follow the common settings of observing 8 time steps (2.4s)
and predicting 12 steps (3.6s); one scene is left-out for test-
ing and the remaining are used for training. We also follow
scene-based methods [6, 10, 9] to filter out the data with
unavailable scene images. The scene images are used to
extract the representation of all possible destinations, simi-
lar to [10]. The compared models are retrained with these
settings if they were trained differently.

As multi-prediction is out of scope of this paper, and to
concentrate only on motion modeling, we take the simple
deterministic settings where only one prediction is gener-
ated. We compare PTD with the SoTA deterministic predic-
tors, namely GTP [10] and SR-LSTM[13]. Extending PTD
to multi-prediction and comparing it to variational methods
is considered a future work.

Network parameters and Settings In PedTraj, we first
embed the pedestrian locations into 8-dimensional vectors.
Following HOI-M, we also use GRUs as RNN units and
MLPs as readout functions in this application. In Persis-
tent Channel, the GRUs of the pedestrians have the hid-
den states of 16 dimensions. The dimensions of the center
GRU, the leaf GRU in Transient Channel, and the GRU in
Switch Module are 32, 16, and 8, respectively. We embed
the cross-channel messages between Persistent Channel and
Transient Channel into 16-dimensional vectors. All models
are trained with the batch size of 64 and optimized by the
Adam optimizer [4] with a learning rate of 0.001.

The system and environment for all experiments are sim-
ilar to those in HOI-M. We train the models for 300 epochs.
The experiments are managed and recorded using Hydra
[12] and Weight-and-Biases frameworks [1]. The full im-
plementation will be made publicly available upon accep-
tance.

Quantitative Evaluation. The means and standard de-
viations of prediction errors on 5 independent runs are re-
ported in Tab. 4. The duality of persistent and transient pro-
cesses once again shows its power in modeling the inter-
leaving mechanisms corresponding to the overall plan and
the interruptive social interactions.

Visual analysis. We visualize the operations of the full
PTD model and GTP in Fig. 6. The visualization shows that

(a) 

Time

pt

0.5

0

1

GTP PTD (Ours)
(b) (c) 

Figure 6: PTD on PedTraj Prediction. Along the course
of the blue pedestrian, the Transient switch anticipates a
collision (a), the switching score pt increases, activating
the Transient channel to handle the social interaction which
steers to avoid the collision (b). When the interaction is
over, pt goes down, terminates the transient channel, and
returns the control to the Persistent channel which guides
the trajectory back to the original plan (c). In contrast, the
baseline GTP model [10] (grey trajectory) does not have
this mode-switching and failed to avoid the collision.

the pair of Persistent/ Transient channels and the Transient
switch operate in synergy to successfully handle the inter-
action, avoid the potential collision and maintain the overall
navigation plan.
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(a) (b)

Figure 8: Additional visualizations of the Switching Behavior in WBHM Dataset

t=T

t=T+2 t=T+5 t=T+10 t=T+15

Factual
switch = on

Counterfactual
Force switch = off

Figure 9: Controllability of the forecasting. We force the Transient switch to not turn on where it naturally does. The
visualization shows that the model seems to accept this intervention, and reasonably forecast the motion as if the agent
changes their mind
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Figure 10: Visual Comparison in Bimaual Action Dataset

(a) (b)

Figure 11: Additional visualizations of the Switching Behavior in Bimanual Action Dataset



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

zv 22 43 64 83 102 120 137 153 168 182

running avg. 2 32 53 73 92 111 128 145 161 176 190

GRU 21.4 ± 0.5 31.2 ± 0.4 40.6 ± 0.5 48.6 ± 0.5 56.8 ± 0.4 64.4 ± 0.8 71.8 ± 0.4 79.6 ± 0.8 87.0 ± 0.6 94.2 ± 0.7

CRNN-OPM 33.4 ± 1.0 37.0 ± 0.9 47.0 ± 0.9 54.6 ± 1.2 61.8 ± 1.2 69.4 ± 1.0 76.2 ± 1.2 83.4 ± 1.4 90.4 ± 1.4 97.4 ± 1.4

CRNN-OPM-LI 23.2 ± 0.4 32.6 ± 0.5 41.4 ± 0.5 49.4 ± 0.5 57.4 ± 0.5 64.6 ± 0.8 72.0 ± 1.1 79.0 ± 1.1 86.2 ± 1.5 93.6 ± 1.9

STS-GCN 47.9 ± 4.9 48.2 ± 4.5 52.5 ± 3.6 59.9 ± 2.7 66.6 ± 1.9 74.5 ± 1.9 81.9 ± 1.7 88.9 ± 1.6 95.0 ± 1.6 100.8 ± 1.7

MotionMixer 12.8 ± 0.5 23.2 ± 0.6 31.8 ± 0.7 39.8 ± 0.9 47.2 ± 1.0 55.0 ± 1.1 63.0 ± 1.2 70.8 ± 1.1 78.4 ± 0.9 85.4 ± 1.1

Ours 15.0 ± 0.0 26.0 ± 0.0 35.8 ± 0.4 44.6 ± 0.5 52.4 ± 0.5 59.8 ± 0.7 66.8 ± 0.7 73.4 ± 1.0 79.6 ± 1.0 85.8 ± 0.7

(a) From 0.1s to 1.0s

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

zv 196 208 220 232 242 253 262 272 281 289

running avg. 2 203 215 227 238 249 259 268 278 286 295

GRU 101.2 ± 0.7 108.8 ± 0.7 116.0 ± 1.1 123.8 ± 1.3 131.0 ± 1.1 138.4 ± 1.4 145.4 ± 1.9 152.0 ± 2.1 158.0±2.6 163.8 ± 2.8

CRNN-OPM 104.0 ± 1.3 110.6 ± 1.4 117.4 ± 1.4 124.0 ± 1.1 130.4 ± 1.4 136.8 ± 1.2 142.8 ± 1.9 148.8 ± 1.9 154.6 ± 2.4 160.2 ± 2.7

CRNN-OPM-LI 100.4 ± 2.0 107.8 ± 2.4 115.2 ± 2.9 122.0 ± 3.0 129.2 ± 3.2 136.2 ± 3.2 143.2 ± 3.2 149.2 ± 3.1 155.6 ± 2.8 161.0 ± 2.9

STS-GCN 106.4 ± 1.6 111.7 ± 2.1 117.0 ± 2.1 122.3 ± 2.2 127.7 ± 2.8 133.5 ± 3.1 139.5 ± 3.4 145.2 ± 3.5 150.9 ± 3.8 157.0 ± 3.9

MotionMixer 92.3 ± 1.0 99.4 ± 1.0 106.5 ± 1.1 113.6 ± 1.3 120.5 ± 1.6 127.4 ± 1.7 134.3 ± 2.0 141.5 ± 2.4 148.5 ± 2.6 155.8 ± 2.8

Ours 91.6 ± 1.0 97.6 ± 1.0 103.2 ± 1.5 108.8 ± 1.3 114.8 ± 1.3 120.2 ± 1.7 125.8 ± 1.7 131.2 ± 1.5 136.6 ± 1.9 141.6 ± 2.0

(b) From 1.0s to 2.0s

Table 5: The mean and standard deviation of the human error at each time step in WBHM Dataset



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

zv 15 28 40 52 64 76 88 101 113 125

running avg. 2 21 33 45 57 68 80 93 105 118 130

GRU 14.0 ± 0.0 26.0 ± 0.0 37.4 ± 0.5 48.6 ± 0.5 59.6 ± 0.5 70.8 ± 1.0 82.4 ± 0.8 94.0 ± 1.1 105.6 ± 1.5 116.8 ± 1.5

CRNN-OPM 13.4 ± 0.5 24.6 ± 0.5 33.8 ± 0.7 42.8 ± 1.0 50.6 ± 1.2 58.6 ± 1.2 66.8 ± 1.5 74.8 ± 2.0 82.6 ± 2.2 89.6 ± 2.1

CRNN-OPM-LI 12.0 ± 0.6 21.6 ± 1.0 29.6 ± 1.4 37.2 ± 2.5 44.0 ± 3.2 50.8 ± 3.4 57.8 ± 4.0 64.8 ± 4.0 71.0 ± 4.0 77.0 ± 4.0

STS-GCN - - - - - - - - - -

MotionMixer - - - - - - - - - -

Ours 10.0 ± 0.0 19.4 ± 0.5 27.6 ± 0.5 35.4 ± 0.5 42.4 ± 0.5 49.2 ± 0.7 55.4 ± 0.5 61.4 ± 1.0 67.2 ± 0.7 72.8 ± 0.7

(a) From 0.1s to 1.0s

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

zv 137 148 160 171 183 193 204 214 225 235

running avg. 2 141 153 164 176 187 198 209 219 229 240

GRU 127.8 ± 1.7 138.6 ± 2.1 149.6 ± 2.1 160.2 ± 2.5 170.6 ± 2.7 181.0 ± 3.0 191.0 ± 3.3 200.8 ± 3.3 210.6 ± 3.6 220.6 ± 3.6

CRNN-OPM 96.2 ± 2.1 102.4 ± 2.1 108.4 ± 2.1 114.0 ± 1.9 119.6 ± 1.9 124.8 ± 1.9 129.6 ± 2.2 134.4 ± 2.4 139.0 ± 3.2 144.4 ± 3.5

CRNN-OPM-LI 82.4 ± 3.9 87.4 ± 4.3 92.4 ± 4.3 97.2 ± 4.3 101.4 ± 4.4 105.2 ± 4.1 108.6 ± 4.0 112.0 ± 4.4 115.0 ± 4.4 118.0 ± 4.4

STS-GCN - - - - - - - - - -

MotionMixer - - - - - - - - - -

Ours 77.8 ± 0.7 82.8 ± 0.7 87.0 ± 1.1 91.2 ± 1.0 95.6 ± 0.8 99.6 ± 0.8 103.8 ± 0.7 107.8 ± 0.7 111.6 ± 1.0 115.8 ± 1.2

(b) From 1.0s to 2.0s

Table 6: The mean and standard deviation of the object error at each time step in WBHM Dataset



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

zv 3.7 6.3 8.3 10 11.9 13.5 14.9 16.2 17.6 18.8

running avg. 2 4.9 7.2 9 10.8 12.6 14.1 15.4 16.8 18.1 19.2

GRU 3.9 ± 0.2 6.7 ± 0.2 8.9 ± 0.3 10.7 ± 0.4 12.4 ± 0.4 13.9 ± 0.4 15.1 ± 0.5 16.3 ± 0.5 17.4 ± 0.5 18.4 ± 0.5

CRNN-OPM 4.3 ± 0.2 7.1 ± 0.2 9.3 ± 0.2 11.1 ± 0.1 12.8±0.1 14.3 ± 0.1 15.6 ± 0.2 16.8 ± 0.2 17.9 ± 0.3 19.0 ± 0.3

CRNN-OPM-LI 3.9 ± 0.1 6.6 ± 0.2 8.7 ± 0.2 10.4 ± 0.3 12.0 ± 0.3 13.5 ± 0.3 14.6 ± 0.4 15.7 ± 0.4 16.7 ± 0.4 17.7 ± 0.4

STS-GCN 5.0 ± 0.8 6.8 ± 0.5 8.7±0.5 10.2 ± 0.5 11.8 ± 0.3 13.1 ± 0.4 14.3 ± 0.4 15.2 ± 0.5 16.2 ± 0.4 17.2 ± 0.4

MotionMixer 3.0 ± 0.1 5.5 ± 0.1 7.7 ± 0.1 9.9 ± 0.2 11.7 ± 0.2 13.3 ± 0.2 14.7 ± 0.2 15.9 ± 0.2 17.1 ± 0.2 18.1 ± 0.2

Ours 3.7 ± 0.1 6.2 ± 0.1 8.0 ± 0.1 9.5 ± 0.2 11.0 ± 0.2 12.2 ± 0.2 13.3 ± 0.2 14.2 ± 0.2 15.2 ± 0.2 16.1 ± 0.2

(a) Keypoints

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

zv 8.6 12.9 15.9 18.4 21.1 23.7 25.7 27.6 29.7 31.5

running avg. 2 10.2 13.9 16.6 19.2 21.8 24.2 26.2 28.2 30.1 31.7

GRU 8.6 ± 0.3 12.9 ± 0.5 16.0 ± 0.7 18.5 ± 0.9 21.0 ± 0.9 23.1 ± 1.0 24.7 ± 1.1 26.3 ± 1.1 27.8 ± 1.1 29.1 ± 1.1

CRNN-OPM 9.7 ± 0.8 13.8 ± 0.6 16.8 ± 0.5 19.4 ± 0.4 21.7 ± 0.2 23.8 ± 0.1 25.5 ± 0.2 27.1 ± 0.2 28.7 ± 0.2 30.1 ± 0.3

CRNN-OPM-LI 8.6 ± 0.1 12.8 ± 0.2 15.7 ± 0.2 18.1 ± 0.3 20.4 ± 0.2 22.3 ± 0.2 23.8 ± 0.3 25.2 ± 0.3 26.6 ± 0.3 27.8 ± 0.3

STS-GCN - - - - - - - - - -

MotionMixer - - - - - - - - - -

Ours 8.4 ± 0.1 12.4 ± 0.1 14.9 ± 0.2 17.0 ± 0.2 19.0 ± 0.2 20.8 ± 0.2 22.1±0.2 23.3 ± 0.2 24.6 ± 0.2 25.8 ± 0.3

(b) Hand boxes

Table 7: The mean and standard deviation of the human errors at each time step in Bimanual Action Dataset

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

zv 2.7 4.3 5.1 5.8 6.8 7.7 8.4 9.1 9.8 10.5

running avg. 2 3.3 4.6 5.3 6.1 7.1 7.9 8.6 9.4 10.1 10.7

GRU 2.7 ± 0.0 4.3 ± 0.0 5.1 ± 0.0 5.9 ± 0.0 6.8 ± 0.0 7.7 ± 0.0 8.4 ± 0.0 9.1 ± 0.0 9.9 ± 0.0 10.5 ± 0.0

CRNN-OPM 2.7 ± 0.0 4.3 ± 0.0 5.2 ± 0.1 6.0 ± 0.1 6.9 ± 0.1 7.8 ± 0.1 8.5 ± 0.1 9.3 ± 0.1 10.0 ± 0.2 10.7 ± 0.2

CRNN-OPM-LI 2.7 ± 0.0 4.3 ± 0.0 5.1 ± 0.0 5.9 ± 0.0 6.8 ± 0.1 7.7 ± 0.1 8.4 ± 0.1 9.2 ± 0.1 9.9 ± 0.1 10.6 ± 0.1

STS-GCN - - - - - - - - - -

MotionMixer - - - - - - - - - -

Ours 2.7 ± 0.0 4.2 ± 0.0 5.1 ± 0.1 5.9 ± 0.1 6.7 ± 0.1 7.5 ± 0.1 8.1 ± 0.1 8.8 ± 0.1 9.4 ± 0.1 10.0 ± 0.1

Table 8: The mean and standard deviation of the object error at each time step in Bimanual Action Dataset


