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Figure 1: t-SNE analysis of embeddings in a 100m x 100m
square. Each color codifies a different 20m cell.

1. Experiments
In this Supplementary Material we report details that

could not fit in the main paper. In Sec. 1.1 we provide
further ablations to better understand how our proposed
method functions.

In Sec. 2 we provide a thorough discussion into how
we adapted the partitioning scheme of previous works, that
originally targeted planet-scale localization, for the pro-
posed task of city-wide localization.

1.1. Further Ablations

Embedding learnt with our AMCC vs Cross Entropy.
The first row in Fig. 1 reports the t-SNE of all embed-

dings in a 100m square, with a model trained either with
AAMC or a fully connected layer with cross-entropy loss;
each color codifies a different 20m cell. Even though some
structures are visible, there is an amount of overlap which
is understandable given that adjacent cells at such fine reso-
lution can present high appearance similarities. The second
row shows why in D&C each classifier is able to learn a

Figure 2: Behaviour of LR@1 during training for each
of the methods. Note that MVMF [7] starts with a high LR
because it uses the weights of a trained PlaNet model.

meaningful distribution: inside each group, thanks to the
non-adjacency of cells, classes are well defined. In partic-
ular, the two plots show how the AAMC yields a better-
structured embedding space thanks to the concept of large
margin.

Behaviour of LR during training with different meth-
ods. In Fig. 2 we analyze how the LR@1 changes after
each epoch for different methods (given the huge size of the
dataset we define an epoch as 2k iterations). We find that
most previous works, namely PlaNet [13], CPlaNet [12]
and Hierarchical Geolocation Estimation [10] present very
mild improvements on LR within the first few epochs w.r.t.
our D&C, which on the other hand grows very steeply right
from the beginning. MvMF initializes its mixture assign-
ment weights from a pretrained PlaNet model, and it termi-
nates the training after less than 100 epochs.

Behaviour of classification accuracy during training us-
ing different N . To better understand how the value of N
affects training stability, we built a plot using N = 2 and
N = 3 and showing the accuracy on the train set at the
end of each epoch. The plot (Fig. 3) shows that in the first
epochs of training the accuracy forms waves with a period
length of size |G| = N ×N , where |G| represents the num-
ber of groups and the number of classifiers. This is due to
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Figure 3: Evolution of classification accuracy during
training with different values of N. We can see that in the
first epochs of training, the accuracy on the train set presents
waves with period length of size |G|. Each color represents
a different classifier being trained at the given epoch for a
total of |G| colors.

Figure 4: Ablation on s (left) and m (right). Best values
are highlighted in bold.

the fact that each classifier is trained once every |G| epochs,
meaning that at the |G|th epoch the model will for the first
time reuse a classifier that has been previously trained, re-
sulting in a steep increase in accuracy every |G| epochs.

Ablation on AAMC hyperparameters.
Our AAMC classifier shares the 2 hyperparameter of the

ArcFace formulation. Namely, s determines the radius of
the hypersphere onto which prototypes are projected, and m
is the enforced margin (in cosine space) between different
prototypes.

Qualitative results. In Figs. 6 and 7 we show some qual-
itative results of challenging queries and the retrieved Top-
3 candidates by some retrieval-only methods (namely Cos-
Place and NetVLAD) and by some classification-retrieval
pipelines (using respectively our D&C and CPlanet as clas-
sification modules).

Approximate Nearest Neighbor Search. In Fig. 5 we re-
port the results with the best combinations of methods / hy-
perparameters for our experiments with Approximate Near-
est Neighbor search algorithms. The plot shows only the
best performing configurations. Among other ANNs that
we tried are standard Product Quantization [5], Inverted
File Indexes (these two methods can be combined in the
IVFPQ), and Inverted File MultiIndex [2]. We didn’t report
these results as they performed poorly w.r.t. their counter-
parts in the plot.
For Table 1 of the main paper we chose two configura-
tion from this pareto-optimal curve, one being optimized

Method
C-Pitts30k C-Tokyo 24/7

(30k images) (76k images)
LR@1 Inf. time LR@1 Inf. time

Classification
PlaNet [12] 31.5 12 ms 19.5 12 ms
HGE [10] 33.6 15 ms 22.0 15 ms
CPlaNet [12] 33.0 17 ms 21.5 17 ms
MvMF [4] 31.5 12 ms 19.9 12 ms
D&C (ours) 40.5 12 ms 33.7 12 ms

Retrieval (kNN time) (kNN time)
NetVLAD [1] 86.1 58 ms 62.2 130 ms
CRN [6] 86.3 58 ms 62.8 130 ms
SARE [8] 87.2 58 ms 74.8 130 ms
SFRS [3] 88.7 58 ms 78.5 130 ms
GeM [11] 77.9 16 ms 46.4 25 ms
CosPlace 88.5 16 ms 82.8 25 ms

Mixed pipeline
D&C(ours) + CosPlace 81.9 1 ms 74.9 3.5 ms

Table 1: Comparison of LR@1 of different methods for
Pitts30k and Tokyo24/7 using EfficientNet-B0 as backbone

for performances and one for speed. For performances,
we picked the configuration that grants at least 10x speed,
with the maximum performances, and this turned out to be
IVFPQ(128,50). For speed, we selected the methods that
provided a speedup of at least 100x. This resulted in choos-
ing IVFPQ(128,2) and HNSW(512).

1.2. Experiments on small datasets

In the main paper we discussed how classification meth-
ods are outperformed by retrieval approaches for small
datasets due to the lack of enough positives during training.
On the other hand, the inference time gap between both pro-
cedures loses relevance when dealing with smaller datasets.
In Tab. 1 it is presented a quantitative analysis on how the
proposed methods behave on datasets that are 1000x smaller
than SF-XL, covering geographical areas less than 3km2

and having half the density of SF-XL.

2. Baselines Implementation Details
Although previous works use different partitioning

methods of the dataset in classes, we carefully tuned the
partitioning hyperparameters to ensure fair comparisons
among different methods. While some methods split the
geographical area according to the density of the training
points [13, 10] others fix the dimension of the cells into a
predefined value and merge them until the number of geo-
graphical regions satisfies the desired condition [12].

The optimal number of classes generated with each
method is shown in Tab. 2, and in the next paragraphs we
detail how we empirically found such values for each parti-
tioning method.

Partitions of HGE, PlaNet and MVMF. The three meth-
ods of PlaNet [13], Hierarchical Geolocation Estimation
(HGE) [10] and MVMF [4] all use the same partitions, with



Partition method SF-XL C-Pitts30k C-Tokyo 24/7
PlaNet / MVMF 65k 486 1840
HGE 19k / 35k / 65k 158 / 272 / 486 508 / 961 / 1840
CPlaNet 54k 369 1236
Ours 114k 687 2492

Table 2: Number of classes in different datasets using
different partitioning methods.

HGE Num. Classes
coarse medium fine LR@1
65.3k 119k 200k 19.0
35.0k 65.3k 119.0k 21.2
18.5k 35.0k 65.3k 27.0
9.4k 18.5k 35.0k 25.3
3.8k 9.4k 18.5k 19.2
1.8k 3.8k 9.4k 10.6

Table 3: Results with different partitions using HGE on
SF-XL.

the only difference that HGE also uses two coarser splits
(medium and coarse) besides the regular partition (fine)
used by the other two. The partitions are built using Google
S2 Sphere library, and take as input two parameters, namely
τmin and τmax, which define the minimum and maximum
number of images within each cell. We empirically search
for the best values for the parameters on the San Francisco
eXtra Large (SF-XL) dataset, and we report the results in
Tab. 3. We choose the partitions that lead to the best LR@1
using HGE, and, following their implementation, we use
the finer HGE partition also as training set for PlaNet and
MVMF. In practice, this leads to a value of τmin = 100 and
τmax = 2500, as shown in Tab. 4 (where we also report the
value of τ for other partitions. Note that we use proportions
between different partitions size according to [10].

We tuned cells density on SF-XL since it is the most
representative dataset for the studied setting. Remember-
ing that these partitioning schemes are based on keep-
ing cell density constant, to extend the comparison to
the other adopted datasets (C-Pitts30k, C-Tokyo24/7), we
scaled τmin and τmax according to the relative density of
the other datasets with respect to SF-XL. In our method,
instead, the partitioning only depends on the desired granu-
larity of localization, so we kept the same 20m cells across
all datasets.

Partitions of CPlaNet.
Regarding CPlaNet’s [12] partitions, we carefully fol-

lowed the authors’ implementation: we created five geo-
class sets for each of the experiments, where geoclass set1
and geoclass set2 evaluate the proximity distance using only
the geographical and visual properties of the images respec-
tively, while the remaining geoclass sets were generated by
considering the distance as a stochastic linear combination

hyperparams fine HGE-medium HGE-coarse
τmin 100 100 100
τmax 2500 5000 10000

Table 4: Chosen hyperparameters for previous methods
partitioning. Note that Planet, HGE-fine and MvMF use the
same partitioning.

Figure 5: Comparisons of best-performing Approximate
Nearest Neighbor search algorithms. We show only the
pareto-optimal results, which are computed with an Inverted
File Index with Product Quantization (IVFPQ) [5] and Hi-
erarchical Navigable Small Worlds (HNSW) [9]. The pa-
rameters in parenthesis for IVFPQ indicate the number of
subquantizers and the nprobe, i.e. the number of Voronoi
cells to be searched (out of 1000). The parameters in paren-
thesis for HNSW indicates the number of connections each
vertex has within the HNSW graph.

of these two modalities. We refer the reader to their paper
for more details about how each geoclass set is formed. In
their method, an additional hyperparameter is the number
of classes in each geoclass set (i.e. their partition algorithm
stopping condition). Finally, at inference time, the granu-
larity considered for prediction is given by the intersections
of the 5 geoclass sets. In Tab. 5 we report results using
different values for each and using the same parameters α
and β, which define the differences between the 5 geoclass
sets. The table also reports in the first column the number
of distinct cells obtained by the intersection of the different
partitions. Also in this case we choose from the table the
split which gave the best results for LR@1.

To export these hyperparameters to the other datasets, we
kept the same average size of the cells in each geoclass set.
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Figure 6: Qualitative results using different pipelines on
challenging queries.

Figure 7: Qualitative results using different pipelines on
challenging queries.


