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In this supplemental document, we provide:

• a summary of existing RGB hand pose estimation
benchmarks (Sec 1);

• implementation details for networks and spectral filters
(Sec 2);

• additional results and analysis (Sec 3);
• limitations of our method (Sec 4);
• additional qualitative examples (Sec 5).

1. Overview of existing datasets
Table 1 presents a summary of existing datasets for hand

pose estimation. As existing egocentric datasets are either
instrumented with visible markers [1] or having limited
background variation [5], both of our synthetic and real
datasets contain densely annotated two-hand with forearms.

2. Implementation details
In this section, we detail the network architectures in

Section 2.1 and provide implementation details of spectral
filters in Section 2.2.

2.1. Network architectures

Our proposed method. We provide in Table 2 the full de-
tails of our network architecture. We use ResNet-50 [4] as
the backbone of our network. The input to our network
model is N number of multi-view 224× 224× 3 RGB im-
ages and the output are two hand meshes with 4023 vertices
each hand.

METRO baseline. We extend METRO [7] from single-
view setting to multi-view and detail the network architec-
ture in Table 3. Each transformer encoder block has 4 layers
and 3 attention heads. Other than the size of feature dimen-
sion, the hyperparameters for transformer encoders are con-
sistent across our proposed method and this baseline.

*This work was done during an internship at Google.

Parametric baseline. We detail the network architecture of
our parametric baseline in Table 4. The output of the net-
work is passed to a pre-computed parametric hand model to
produce hand mesh with 4023 vertices.

2.2. Implementation details of spectral filters

We perform spectral filtering by applying a customised
filter to the spectral representation of the graph signal. The
spectral representation depends on the adjacency matrix and
the eigenvectors of the graph. Spectral filtering is performed
by applying a filter function to the spectral coefficients. In
the following, we detail Gaussian and Laplacian filters.

Given eigenvalue λ, the Gaussian filter function fgau can
be described as:

fgau(λ) = e
−λ2

2σ2 , (1)

where σ is the standard deviation of the Gaussian distri-
bution. We set σ = 0.5 in our experiments. Similarly, the
Laplacian filter function flap can be described as:

flap(λ) = λ− 1
2 . (2)

As eigenvalues can have zero and negative values, the in-
verse square root computation can result in NaN (not a num-
ber) values. Therefore, we put a tolerance value that is close
to zero to avoid this.

3. Additional analysis
3.1. Influence of different loss terms

In Table 5, we analyse the influence of different loss
terms. In these experiments, we consider L1 losses on 3D
mesh vertices and 2D re-projection loss, i.e. Lmesh and
L2D, respectively. In addition, we experiment with mean
squared euclidean distance loss LMSE on hand mesh. For
mesh regularisation, we apply edge length regularisation
Ledge and minimise the Chamfer distances Lcham. We find
that the combination of Lmesh, L2D and Ledge delivers the
optimal results.



Table 1: A comparison of existing RGB hand pose estimation benchmarks.

# Frames Two-hand Egocentric Markerless Background
variation

Dense
annotation

FPHA [1] 105k ✗ ✓ ✗ ✗ ✗
FreiHAND [11] 37k ✗ ✗ ✓ ✗ ✗
InterHand2.6M [8] 2.6M ✓ ✗ ✓ ✗ ✗
H2O [5] 571k ✓ ✓ ✓ ✗ ✗
H2O-3D [2] 76k ✓ ✗ ✓ ✗ ✗
Ego3DHands [6] 55k ✓ ✓ ✓ ✓ ✗

Ours (synthetic) 1M ✓ ✓ ✓ ✓ ✓
Ours (real) 61k ✓ ✓ ✓ ✗ ✓

3.2. Analysis on mesh refinement at inference

For quantitative evaluation, we followed [3, 9, 10] to
include penetration depth (mm) and intersection volume
(cm3). Penetration depth refers to the maximum distances
from hand mesh vertices to the other/self hand’s surface
when in a collision. Intersection volume is obtained by vox-
elising the meshes using a voxel size of 0.5cm. We report
the results in Table 6. These results demonstrate the robust-
ness of our optimisation-based mesh refinement strategy.

3.3. Complete results for model compression

We provide complete experimental results for model
compression in Table 7. We find that the feature channel
size C cannot drop under 64 as performance drops mas-
sively. Therefore, we fix C = 64 and reduce the number of
vertices for template hand mesh V ′.

3.4. Complete results for multi-view fusion

We provide complete experimental results for different
multi-view fusion strategies in Table 8. We find that the
combination of soft-attention fusion and mesh segmentation
consistently improves the performance.

3.5. Illustration of different fusion strategies

We illustrate two fusion strategies in Fig. 2 which were
considered for Table 3 in the main text. In Fig. 2a), as max
pooling is applied on each of the input image separately,
the resulting features are in size of [N×2048]. On the other
hand, in Fig. 2b), only one global feature vector is computed
per data sample by applying max pool across multi-view
input images.

3.6. Additional quantitative comparison on real
dataset

We provide additional quantitative comparison with
METRO [7] using our real dataset in Table 9. In these ex-
periments, we vary the number of input camera views for
training and withheld 3 unseen camera views for evaluation.

Our method consistently outperforms our METRO baseline
across different number of input views. This shows the gen-
eralisation ability of our proposed method.

4. Method limitations
Though our method results in accurate and physically-

plausible high fidelity two-hand reconstructions, the results
are sometimes not plausible when self-penetration is highly
complex (see Fig. 1). We believe this problem can be tack-
led in the future by incorporating temporal information and
more advance physical modeling into our proposed frame-
work. In particular, the current optimisation-based mesh re-
finement works on self-penetrations only. Solving interpen-
etrations during hand-hand interactions is in-line with our
future goal.

5. Additional examples
We provide additional qualitative examples on our syn-

thetic dataset and real dataset in Fig. 3 and Fig. 4, respec-
tively.



Table 2: Architecture of our network. B refers to batch size
and N refers to the number of multi-view RGB input im-
ages. Note that the duplicated layer numbers are performed
in parallel and the output of layer 13 is concatenated with
template hand mesh 804 × 3 before feeding to transformer
encoder in layer 14.

Layer Operation Dimensionality

Input B×N×224×224×3

1 ResNet-50 B×N ×7×7×2048

2 Upsampling 2D B×N×14×14×2048
3 Convolution 2D B×N×12×12×256
4 Batch normalisation B×N×12×12×256
5 ReLU B×N×12×12×256
6 Upsampling 2D B×N×24×24×256
7 Convolution 2D B×N×22×22×256
8 Batch normalisation B×N×22×22×256
9 ReLU B×N×22×22×256

2 Upsampling 2D B×N×14×14×2048
3 Convolution 2D B×N×12×12×256
4 Batch normalisation B×N×12×12×256
5 ReLU B×N×12×12×256
6 Upsampling 2D B×N×24×24×256
7 Convolution 2D B×N×22×22×256
8 Batch normalisation B×N×22×22×256
9 ReLU B×N×22×22×256
10 Convolution 1D B ×N × 22× 22× 7
11 Spatial softmax B ×N × 22× 22× 7

12 Matrix multiplication B ×N × 7× 256
13 Max pooling B × 7× 256

14 Transformer encoder B × 804× 259
15 Fully-connected layer B × 804× 130
16 Transformer encoder B × 804× 130
17 Fully-connected layer B × 804× 65
18 Transformer encoder B × 804× 65
19 Fully-connected layer B × 804× 3

20 Fully-connected layer B × 617× 3
21 Spectral filtering B × 617× 3
22 Fully-connected layer B × 1234× 3
23 Spectral filtering B × 1234× 3
24 Fully-connected layer B × 2468× 3
25 Spectral filtering B × 2468× 3
26 Fully-connected layer B × 4023× 3

20 Fully-connected layer B × 617× 3
21 Spectral filtering B × 617× 3
22 Fully-connected layer B × 1234× 3
23 Spectral filtering B × 1234× 3
24 Fully-connected layer B × 2468× 3
25 Spectral filtering B × 2468× 3
26 Fully-connected layer B × 4023× 3

Output B × 8046× 3

Table 3: Architecture of METRO baseline.

Layer Operation Dimensionality

Input B×N×224×224×3

1 ResNet-50 B×N ×7×7×2048
2 Max pooling 2D B × 2048

3 Transformer encoder B × 804× 2051
4 Fully-connected layer B × 804× 1026
5 Transformer encoder B × 804× 1026
6 Fully-connected layer B × 804× 513
7 Transformer encoder B × 804× 513
8 Fully-connected layer B × 804× 256
9 Fully-connected layer B × 804× 3

10 Fully-connected layer B × 1624× 3
11 Fully-connected layer B × 4023× 3
12 Fully-connected layer B × 8046× 3

Output B × 8046× 3

Table 4: Architecture of parametric baseline.

Layer Operation Dimensionality

Input B×N×224×224×3

1 ResNet-50 B×N ×7×7×2048
2 Max pooling 2D B × 2048

3 Fully-connected layer B × 1024
4 Fully-connected layer B × 512
5 Fully-connected layer B × 200

Output B × 200

Table 5: Impact of different loss terms on our synthetic
dataset. Hand errors are given in millimeters (mm).

Lmesh L2D LMSE Ledge Lcham Error

✓ ✓ 1.55
✓ ✓ ✓ 1.48
✓ ✓ ✓ 1.38
✓ ✓ ✓ ✓ 1.38
✓ ✓ ✓ ✓ ✓ 1.49

Table 6: Quantitative evaluation on the impact of mesh re-
finement at inference.

Before
refinement

After
refinement

Max. penetration (mm) 5.3 0.16
Intersection vol. (cm3) 2.0 0.09



Table 7: Ablations of different backbones and hyperparam-
eters. We denote Pcnn and Ptotal to be the number of pa-
rameters for CNN backbone and total model, respectively.

Backbone Pcnn V ′ C Error Ptotal

ResNet-50 23.5M 804 256 1.38 58.3M

EfficientNet-B3 12.9M 804 256 2.53 47.7M
EfficientNet-B2 9.2M 804 256 2.55 44M
EfficientNet-B1 7.8M 804 256 2.74 42.6M
EfficientNet-B0 5.3M 804 256 2.85 40.1M

EfficientNet-B3 12.9M 804 128 3.00 40.6M
EfficientNet-B2 9.2M 804 128 3.20 36.9M
EfficientNet-B1 7.8M 804 128 3.20 35.5M
EfficientNet-B0 5.3M 804 128 2.91 33M

EfficientNet-B3 12.9M 804 64 4.00 38.4M
EfficientNet-B2 9.2M 804 64 3.87 34.7M
EfficientNet-B1 7.8M 804 64 4.04 33.3M
EfficientNet-B0 5.3M 804 64 4.31 30.8M

EfficientNet-B3 12.9M 804 32 89.7 37.3M
EfficientNet-B0 9.2M 804 32 90 29.7M

EfficientNet-B0 5.3M 160 256 4.12 42.8M
EfficientNet-B0 5.3M 160 128 4.96 37.8M
EfficientNet-B0 5.3M 80 64 6.89 34.2M

Table 8: Performance of different multi-view fusion strate-
gies. We report hand error for both settings. K refers to the
number of clusters for template hand mesh. Note that we do
not include spectral filtering in the graph decoder here.

Single-view Multi-view

METRO [7] 10.87 -
METRO [7] + avg. pool - 8.71
METRO [7] + max pool - 7.09

Ours (K = 1) - 6.59
Ours (K = 2) - 5.71
Ours (K = 3) - 5.19
Ours (K = 4) - 4.79
Ours (K = 5) - 4.59
Ours (K = 6) - 5.28
Ours (K = 7) - 3.72
Ours (K = 8) - 3.79

Table 9: Error rates on our real dataset. Our method con-
sistently outperforms METRO on different number of input
views.

5-views 3-views 2-views

METRO [7] 9.67 12.0 16.1
Ours 4.34 6.94 7.73

Rotated view

Figure 1: Failure examples for mesh refinement.

CNN Max pool 2D

CNN Max pool 2D 
across N views

a) Direct concatenation

b) Max pool across multi-views

Figure 2: Illustration of different feature fusion strategies.



Figure 3: Additional qualitative examples on our synthetic dataset.



Figure 4: Additional qualitative examples on our real dataset.
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