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1. Experiments
In this supplementary material, we will show more ex-

perimental results. First, we show the implementation de-
tails on the four datasets. Second, we provide the discussion
of trade-off parameters on the four datasets. Next, we show
more ablation studies on the four datasets. Finally, we show
more qualitative examples on the four datasets.

1.1. Implementation Details

We provide more implementation details of our method.
During training, the batch sizes and learning rates of our
method on the four datasets are shown in Table 1. We train
the model to convergence with 10K iterations in total. Both
training and inference are implemented with PyTorch on an
RTX 3090 GPU. The used resources on the four datasets
are shown in Table 2. We can find that our method does
not need much training time and GPU memory, so it can be
easily reproduced by other researchers.

Batch Size Learning Rate
CLEVR-Change 128 2 × 10−4

CLEVR-DC 128 2 × 10−4

Spot-the-Diff 32 2 × 10−4

Image Editing Request 16 1 × 10−4

Table 1. The training parameters on the four datasets.

1.2. Study on the Trade-off Parameters

In this section, we discuss the trade-off parameters λv

and λm in Eq. (13) of the main paper on the four datasets.
Both parameters are to balance the contributions from the

*Corresponding authors

Training Time GPU Memory
CLEVR-Change 3 hours 20G

CLEVR-DC 1.5 hours 15.6G
Spot-the-Diff 20 minutes 5G

Image Editing Request 15 minutes 4.3G

Table 2. Used training time and GPU memory on the four datasets.
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Figure 1. The effects of λv and λm on CLEVR-Change.
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Figure 2. The effects of λv and λm on CLEVR-DC.

caption generator, SCORER, and CBR. In Figure 1, We first
analyze the effect of λv on the CLEVR-Change dataset. We
find that the performance of SCORER changes under differ-
ent values, because the model will focus much on one part
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Figure 3. The effects of λv and λm on Image Editing Request.
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Figure 4. The effects of λv and λm on Spot-the-Diff.

Ablation B M R C S

Subtraction 46.2 31.5 63.4 68.5 13.9
RR 46.9 31.7 64.2 71.6 14.6

SCORER 49.5 33.4 66.0 82.4 15.8
RR+CBR 47.2 32.3 64.4 73.0 15.0

SCORER+CBR 49.4 33.4 66.1 83.7 16.2

Table 3. Ablation study on CLEVR-DC.

Ablation B M R C S

Subtraction 6.7 13.7 37.4 22.1 8.7
RR 8.3 14.3 39.2 30.2 12.4

SCORER 9.6 14.6 39.5 31.0 12.6
RR+CBR 7.1 14.6 40.6 31.9 12.3

SCORER+CBR 10.0 15.0 39.6 33.4 12.6

Table 4. Ablation study on Image Editing Request.

Ablation B M R C S

Subtraction 7.2 11.9 28.9 29.4 13.0
RR 7.4 12.0 27.6 26.2 14.2

SCORER 9.4 13.8 32.0 38.5 19.3
RR+CBR 8.1 11.7 30.6 32.4 15.6

SCORER+CBR 10.2 12.2 31.9 38.9 18.4

Table 5. Ablation study on Spot-the-Diff.

but ignore the supervision from the other. We empirically
set λv to 0.1. Then, we fix λv to discuss the effect of λm

for SCORER+CBR and set it as 0.001. In Figure 2, we also

first analyze the effect of λv on the CLEVR-DC dataset. We
empirically set λv to 0.01. Then, we fix λv to discuss λm.
We find that the CIDEr scores are identical when setting λm

as 0.002 and 0.004. Thus, we further compare their SPICE
scores (16.0 vs. 16.2) and set λm to 0.004. By that analogy,
we discuss the effect of λv and λm on the Image Editing
Request and Spot-the-Diff datasets. We empirically set λv

and λm as 0.003 and 0.06 on Image Editing Request; 0.3
and 0.5 on Spot-the-Diff.

1.3. Ablation Study

We carry out ablation studies to validate the effective-
ness of our method. (1) Subtraction is a transformer-based
baseline model which computes difference features by di-
rect subtraction. (2) RR refers to vanilla representation re-
construction without cross-view contrastive alignment. (3)
SCORER is the proposed self-supervised cross-view repre-
sentation reconstruction network. (4) CBR means the pro-
posed module of cross-modal backward reasoning.

Results on CLEVR-DC. Table 3 shows the ablation
studies of our method on the CLEVR-DC dataset, which are
evaluated in terms of total performance. We can draw the
same conclusion from the ablative variants. Compared with
the baseline model of Subtraction, it is effective to first com-
pute the aligned properties and then deduce the difference
features. The proposed SCORER first learns the represen-
tations that are invariant under extreme viewpoint changes
for a pair of similar images, by maximizing their cross-view
contrastive alignment. Then, SCORER can fully mine their
common features to reconstruct the representations of un-
changed objects, thereby learning a stable difference repre-
sentation for caption generation. Besides, CBR is helpful
to improve the quality of generated sentences, which shows
that it does enforce the yielded sentence to be informative
about the learned difference.

Results on Image Editing Request. Table 4 shows the
ablation studies of our method on the Image Editing Re-
quest dataset, where two images in the pair are aligned and
the edited objects on this dataset are usually inconspicuous.
We can obtain the same observations. Match-based strategy
(RR) performs better than the strategy of direct subtraction.
The proposed SCORER can fully align and mine the com-
mon features between two images, so as to reconstruct reli-
able unchanged representations for learning a stable differ-
ence representation. When we implement CBR, the perfor-
mance of SCORER+CBR is further boosted, which shows
that CBR is helpful to improve captioning quality.

Results on Spot-the-Diff. Table 5 shows the ablation
studies of our method on the Spot-the-Diff dataset. We
can find that compared with the baseline model of Sub-
traction, the improvement is not significant when using the
model of representation reconstruction. Our conjecture is
that image pairs on this dataset are well-aligned, so direct
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Figure 5. Effect of cross-view contrastive alignment on four
datasets.

subtraction also can capture some salient changes. When
we perform cross-view contrastive alignment, the perfor-
mance of SCORER is significantly boosted, which shows
that it facilitates correct alignment between unchanged ob-
jects, so as to help locate fine-grained changes. When in-
troducing CBR, we observe that the results of RR+CBR
and SCORER+CBR are not improved significantly. As
we discussed in the main paper, the image pairs on this
dataset actually contain one or more changes. For fair-
comparison, we conduct experiments mainly based on the
single-change setup. This makes the “hallucination” repre-
sentation, which is reversely modeled by the “before” rep-
resentation and single-change caption, not fully matched
with the “after” representation. In this situation, the perfor-
mances of RR+CBR and SCORER+CBR do not gain sig-
nificant improvement.

Effect of Cross-view Contrastive Alignment. We
study the effect of cross-view contrastive alignment, which
is key to learn view-invariant image representations. Be-
sides, we try L2 distance metric to achieve this goal by
only maximizing alignment of similar images. Fig. 5
shows comparison results among RR (without alignment
constraint), RR+L2, and SCORER. We find that SCORER
achieves the best result, while the performance of RR+L2

is the worst. The comparison results validate that it is
necessary to build contrastive alignment between simi-
lar/dissimilar images, which helps the model focus more on
the change of feature and resist feature shift. As a result,
the model can capture the stable difference representation
between two images for caption generation.

Study of Different Fusion Strategies to Model Dif-
ference Representation. In the Eq. (7) of main paper,
we obtain the difference representation between two im-
ages by concatenating the changed features of each im-
age. In order to validate whether concatenation is a good
choice in the case of extreme viewpoint changes, besides
concatenation (“cat”), we try to use other fusion strate-
gies to model the difference representation between two
images: sum, hadamard product, and respective interaction
with words and then “cat”. The experiment is conducted on
the CLEVR-DC dataset with extreme viewpoint changes.
Here, we report the comparison results under CIDEr metric:
“cat” (82.4), sum (61.9), hadamard product (61.6), respec-
tive interaction with words and then “cat” (81.3). The re-
sults validate the effectiveness of our choice: using “cat” to

construct an omni-representation of change between cross-
view images. With this omni-representation, our model can
accurately locate changed regions on two images during
word generation, even under extreme viewpoint changes.
This benefits from view-invariant representation learning
and cross-modal backward reasoning.

1.4. Qualitative Analysis

In this section, we provide more visualization results
about the alignment of unchanged objects, and the gener-
ated captions along with the attention weight at each word
on the four datasets.

In Figure 6 - 9, we visualize the alignment be-
tween unchanged objects under different change types
on CLEVR-Change, CLEVR-DC, Image Editing Request,
and Spot-the-Diff, respectively. The compared method
is MCCFormers-D that is a state-of-the-art method based
on transformer. To fully match cross-view images, both
SCORER and MCCFormers-D respectively use one im-
age to query the shared objects on the other one, so ob-
taining two attention maps about cross-view alignment.
We find that when directly matching two image features,
MCCFormers-D mainly attends to some salient objects. In-
stead, our SCORER first learns two view-invariant image
representations in a self-supervised way, by maximizing
their cross-view contrastive alignment. Based on these,
SCORER can better align and reconstruct the representa-
tions of unchanged objects, so as to facilitate subsequent
difference representation learning.

In Figure 10 - 13, we visualize the generated captions
along with the attention weight at each word under differ-
ent change types on CLEVR-Change, CLEVR-DC, Image
Editing Request, and Spot-the-Diff, respectively. When pre-
dicting the next word, the decoder uses generated words to
compute attention over the learned difference representa-
tion, which yields a single attention map about cross-modal
alignment. We interpolate it on each image to show the lo-
calization of before- and after-changed object during word
generation. When the attention weight is higher, the lo-
calized region is brighter. We observe that when gener-
ating the words about the changed object or its referent,
SCORER+CBR can adaptively attend to the correspond-
ing regions. This superiority mainly results from the facts
that 1) SCORER learns two view-invariant image represen-
tations for reconstructing the representations of unchanged
objects, so as to learn a stable difference representation for
caption generation; 2) cross-modal backward reasoning can
improve the quality of generated captions by enforcing the
caption to be informative about the learned difference.
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Figure 6. Visualization of the alignment of unchanged objects on CLEVR-Change, computed by MCCFormers-D and our SCORER.
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Figure 7. Visualization of the alignment of unchanged objects on CLEVR-DC, computed by MCCFormers-D and our SCORER.
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Figure 8. Visualization of the alignment of unchanged objects on Image Editing Request, computed by MCCFormers-D and our SCORER.
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Figure 9. Visualization of the alignment of unchanged objects on Spot-the-Diff, computed by MCCFormers-D and our SCORER.
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Figure 10. Three cases about “Color Change”, “Add”, and “Move” from CLEVR-Change, where the generated captions along with the
attention weight at each word are visualized.
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Figure 11. Three cases about “Drop”, “Add”, and “Move” from CLEVR-DC, where the generated captions along with the attention weight
at each word are visualized.

remove the  people  in the  backgroundSCORER+CBR:

<before>

<after>

make  the  whole  image  brighter  SCORER+CBR:

<before>

<after>

add a background  SCORER+CBR:

<before>

<after>

(a) Object Drop

(b) Color Change

(c) Object Add

Figure 12. Three cases about “Drop”, “Color Change”, and “Add” from Image Editing Request, where the generated captions along with
the attention weight at each word are visualized.
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Figure 13. Three cases about “Drop”, “Add”, and “Move” from Spot-the-Diff, where the generated captions along with the attention weight
at each word are visualized.


