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In this supplementary material, Sec. 1 first illustrates the
implementation details of VQD-SR, which includes the im-
plementation of VQ degradation model in Sec. 1.1, the de-
tails of VSR model in Sec. 1.2, and the experiment details
in Sec. 1.3. Then Sec. 2 introduces our RAL dataset with
statistics and representative samples. Sec. 3 shows more
comparison results.

1. Implementation Details
1.1. VQ Degradation Model

Network Architecture. The architecture of our multi-scale
VQGAN for degradation modeling is described in Tab. 4.
The inputs of (b) Middle Branch and (c) Bottom Branch are
the intermediate outputs of (a) Top Branch, represented by
xm and xb respectively. The corresponding output features
x̂m and x̂b are further added back to the top branch when de-
coding. The vector-quantization is conducted pixel by pixel
on the encoded outputs zt, zm and zb in latent space with
256 channels VQ codebook sized 1024. The compression
factor f , which denotes the patch size when projecting each
entry in the VQ codebook from latent space to the original
image space, is set to {8,4,2} controlled by the number of
downsample steps in these three branches. During training,
the middle branch and the bottom branch only take effect in
the second-stage. All the training procedures are performed
on eight NVIDIA 32G V100 GPUs.
Degradation Pipeline. The whole degradation pipeline
with multi-scale VQGAN to transfer the real-world degra-
dation priors can be formulated as: x = Dn(y) = (FFmpeg
◦ VQD ◦ Down ◦ Noise ◦ Blur)(y). Where x denotes the
degraded LR clips and y denotes the HR clips. For basic
operators (blur, noise, and FFmpeg), we follow the settings
and hyperparameters in AnimeSR [8]. For VQ degradation,
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Table 1. Ablation Study of the value K in stochastic Top-k VQ
strategy.

Top-1 Top-30 Top-50 Top-100
MANIQA↑ 0.3770 0.3846 0.3857 0.3756
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Figure 1. Ablation Study of the value K in stochastic Top-k VQ
strategy. We choose K = 50 in our VQD-SR.

Table 2. Results of different animation VSR methods in NIQE. ‘∗’
denotes fine-tune on animation dataset AVC-Train [8].

RealBasicVSR* AnimeSR VQD-SR
NIQE↓ 8.5358 8.7088 8.4737

Table 3. Evaluations with PSNR/SSIM on ATD test2k.

AnimeSR VQD-SR
PSNR↑ 35.49 35.54
SSIM↑ 0.9701 0.9702

we keep the nearest neighbor search on the top and the mid-
dle branch while adopting the stochastic top-k VQ strategy
on the bottom branch.
Stochastic Top-k VQ strategy. Specifically, for each train-
ing clip in every iteration, we uniformly sample an integer



Table 4. Architecture of Multi-scale VQGAN. The proposed multi-scale VQGAN is composed of three parallel branches: (a) Top Branch,
(b) Middle Branch, and (c) Bottom Branch. The downsample block is realized by a 3 × 3 convolution layer with stride 2. The upsample
block is composed of a 3 × 3 convolution layer with stride 1 and a pixelshuffle layer. C = 128 is the number of base channel, nz = 256
is the embedding dimension of VQ codebook.

(a) Top Branch
Encoder Decoder

x ∈ RH×W×3 zq(t) ∈ RH/8×W/8×nz

Conv2D → RH×W×C Conv2D → RH/8×W/8×4C

Downsample Block, 2 × Residual Block→ xb ∈ RH/2×W/2×C Non-Local Block → RH/8×W/8×4C

Downsample Block, 2 × Residual Block → xm ∈ RH/4×W/4×2C 2 × Residual Block, Conv2D → RH/8×W/8×2C

Downsample Block, 2 × Residual Block→ RH/8×W/8×2C (+ x̂m), 2 × Residual Block, Upsample Block→ RH/4×W/4×2C

Conv2D, 2 × Residual Block→ RH/8×W/8×4C (+ x̂b), 2 × Residual Block, Upsample Block→ RH/2×W/2×C

Non-Local Block→ RH/8×W/8×4C 2 × Residual Block, Upsample Block→ RH×W×C

GroupNorm, Conv2D → zt ∈ RH/8×W/8×nz 2 × Residual Block → x̂ ∈ RH×W×3

(b) Middle Branch
Encoder Decoder

xm ∈ RH/4×W/4×2C zq(m) ∈ RH/4×W/4×nz

Conv2D, 2 × Residual Block→ RH/4×W/4×2C Conv2D→ RH/4×W/4×4C

Conv2D, 2 × Residual Block→ RH/4×W/4×4C 2 × Residual Block, Conv2D → RH/4×W/4×2C

GroupNorm, Conv2D → zm ∈ RH/4×W/4×nz 2 × Residual Block, Conv2D → x̂m ∈ RH/4×W/4×2C

(c) Bottom Branch
Encoder Decoder

xb ∈ RH/2×W/2×C zq(b) ∈ RH/2×W/2×nz

Conv2D, 2 × Residual Block→ RH/2×W/2×2C Conv2D→ RH/2×W/2×4C

Conv2D, 2 × Residual Block→ RH/2×W/2×2C 2 × Residual Block, Conv2D → RH/2×W/2×2C

Conv2D, 2 × Residual Block→ RH/2×W/2×4C 2 × Residual Block, Conv2D → RH/2×W/2×2C

GroupNorm, Conv2D → zb ∈ RH/2×W/2×nz 2 × Residual Block, Conv2D → x̂b ∈ RH/2×W/2×C

k from [1, K] as the degradation level, and utilize the kth
nearest codebook entry to conduct the element-wise quan-
tization on the encoded output in the bottom branch. A
larger k denotes a more severe degradation, and K denotes
the max degradation level in training. As shown in Tab. 1
and Fig. 1, we compare the results of animation VSR when
K = {1, 30, 50, 100} on VQD-SR (base). When trained
with a small K (e.g., K = 1, also the nearest neighbor
search), the animation VSR model has limited generaliza-
tion ability due to the rigid degradation level in training.
However, when K is too large (e.g., K = 100), the degra-
dations are so severe that contaminate the original image
structures and disturb the training of VSR model. Based on
the results, we finally choose K = 50 for our VQ degrada-
tion model, which leads to better results with sharper lines
in smooth shapes. Referring to Fig. 7-8, we also show some
visual examples of LR video frames degraded by multi-
scale VQGAN in multi-levels with different k.

1.2. Video Super-Resolution Model

We follow the VSR model in AnimeSR [8] because of
its efficiency but remove the SR feedback in the recurrent
block as shown in Fig. 2. Different from natural domain
videos, the continuities between animation video frames are
relatively poor which causes difficulties for explicit align-

ment modules and further impacts the final VSR results.
Thus, the explicit alignment module is left out in the ar-
chitecture of animation VSR model, where the misaligned
recurrent features are directly adopted, which also greatly
shrinks the computation costs. However, as is studied by
Chan et al. [2] that although long-term information is bene-
ficial for VSR, it may suffer from error accumulation during
propagation. For VSR models without explicit alignment
modules, this problem could be more severe. As shown in
Fig. 3, we find that too many misaligned recurrent features
make the animation VSR model [8] susceptible to error ac-
cumulation, and sometimes cause a collapse of GAN loss in
training, leading to corrupt VSR models. Based on this ob-
servation, we remove the SR feedback in the recurrent block
to ensure more stable training. We train the VSR model on
eight NVIDIA 32G V100 GPUs.

1.3. Experiment Details

Evaluations with MANIQA. We test the super-resolution
methods on AVC-RealLQ [8], which is a real-world anima-
tion video dataset containing 46 low-quality clips with 100
frames per clip. As the lack of ground truths for testing,
we follow AnimeSR [8] and adopt the no-reference image
quality assessment (NR-IQA) metric MANIQA [9] to eval-
uate the final SR results in the main paper. MANIQA is
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Figure 2. Architecture of VSR model. We follow the VSR model
in AnimeSR [8] but remove the SR feedback in the recurrent block
for stable training.

Figure 3. Too many recurrent features cause unstable training lead-
ing to corrupt animation VSR models.

designed for rating GAN-based distorted images, which is
suitable for evaluating GAN-based image restoration algo-
rithms. Following [9] and [8], we measure MANIQA every
10 frames in each video. For each testing frame, we ran-
domly crop 224× 224 sized images 20 times and calculate
the average score. We run the evaluation process 3 times
and report the mean metrics for all of the reported results.
Evaluations with NIQE. We show the evaluations of dif-
ferent animation VSR methods with NIQE [4] on AVC-
RealLQ in Tab. 2. NIQE is a hand-crafted feature-based
method that has less ability to measure the diverse distor-
tions in the real world and especially some GAN-based dis-
tortions caused by image restoration algorithms. [8] also
has mentioned that NIQE lacks consistent with the percep-
tual visual quality. However, our VQD-SR still outperforms
the other two SOTA animation VSR methods in NIQE.
Evaluations on ATD test2k. ATD-12K [6] is a large-
scale HR animation triplet dataset, which comprises 12,000
triplets. As only HR images are provided in ATD, we fol-
low the conventional SR setting that reports PSNR/SSIM of
AnimeSR and ours on 4× bicubic (BI) downsampled im-
ages in Tab. 3. The results demonstrate the advantage of
our method under the ideal BI setting. However, the setting
of AVC-RealLQ in the main paper is a more challenging but
practical scenario for real applications of animation VSR.
User Study on Visual Quality. We conduct A-B tests
to further compare the visual quality of VQD-SR with
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Figure 4. Statistics of RAL.
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Figure 5. Samples of RAL and typical degradation phenomena in
real-world LR animation videos.

other six SOTA methods (BasicVSR [1], PDM [3], Real-
ESRGAN [7], BSRGAN [10], RealBasicVSR [2], Ani-
meSR [8]) successively. For each comparison with one of
the six methods, there are 20 subjects involved in the tests
on the SR results of AVC-RealLQ [8] with 46 animation
video clips. Considering the subtle qualitative differences
between frames, we uniformly sample 4 frames for testing
in each clip. The user interface for the A-B test, as shown
in Fig. 6, provides the users with two images in random or-
der which include one VQD-SR frame and one frame from
the other method. Users are asked to select one with higher
visual quality. As the resolutions of SR results are too large
(e.g., 5760 × 4320) to fit the screen and display the details
at the same time if only providing the complete images, we
further show two side-by-side zoom-in windows controlled
by mouse with adjustable positions and sizes. The final re-
sults are the percentages of votes which prefer VQD-SR to
other methods.

2. Statistics and Samples of RAL

Our Real Animation Low-quality (RAL) video dataset
contains over 10K LR frames extracted from 441 real-world
low-quality animation videos and contains rich real-world
degradations in animation domain. The statistics of RAL is
shown in Fig. 4. In Fig. 5, we also show some representative
samples and typical real-world degradations in RAL.



Figure 6. UI of the A-B test. The main window shows the complete
image with the current testing progress and frame name beneath.
Two sub-windows on the right display the zoom-in details of two
methods where the mouse hovers, and the size of the viewport can
also be adjusted by scrolling the mouse wheel. Users are asked to
select the one with higher visual quality by pressing ‘1’ or ‘2’ on
the keyboard.

3. More Qualitative Comparisons
In this section, we show more qualitative results to verify

the effectiveness of our proposed methods.
Animation VSR Results. In Fig. 9 - 12, we compare our
VQD-SR with six SOTA SR methods. The first crop shown
in each case is the bicubic 4× upscaled original input for
reference, as the absence of ground truths in real scenar-
ios. Our VQD-SR is capable to recover visually natural
and sharper lines (Fig. 9, Fig.11) with fewer artifacts, re-
store clear details (Fig. 10), handle some intended scenarios
(e.g., the out-focus background blur) with fewer over-sharp
artifacts (Fig. 12).
HR-SR Enhancement. In Fig. 14, we show the enhanced
HR animation video frames with different SR models. Our
HR-SR enhancement strategy could alleviate the compres-
sion artifacts and sharpen the edges without contaminating
the original details in animation HR frames. As shown in
Fig. 13, the proposed HR-SR strategy is valid to improve
the results of animation VSR, regardless of the specific VSR
model, with the help of more effective ground truths for
training.

We further extend the HR-SR enhancement strategy
from animation videos to natural videos (REDS [5]) in
Fig. 15. Because of the complex textures and irregular il-
lumination conditions, directly adopting HR-SR enhance-
ment strategy to natural videos would cause amplified illu-
mination artifacts (row 1), contaminated details (row 2), and
over-sharp textures (row 3), leading to unappealing results.
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Figure 7. Examples of LR frames degraded by multi-scale VQGAN in multi-levels. From top to bottom, left to right, we show the
degradation levels in ascending order. For the sake of clear comparisons, we show the results every 3 levels in the first 70 levels (k =
1, 4, 7, ..., 70) here. Input HR: AVC-Train/bang dream p1 0/00000049.png



Figure 8. Examples of LR frames degraded by multi-scale VQGAN in multi-levels. From top to bottom, left to right, we show the
degradation levels in ascending order. For the sake of clear comparisons, we show the results every 3 levels in the first 70 levels (k =
1, 4, 7, ..., 70) here. Input HR: AVC-Train/b0034m9wleq.10005 movie001 0/00000049.png
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Figure 9. Qualitative comparisons with SOTA methods. ‘∗’ denotes fine-tune on animation dataset AVC-Train [8]. Our VQD-SR is capable
to recover visually natural and sharper lines with fewer artifacts.



touch/50

InputInput BasicVSR*BasicVSR* PDM*PDM* Real-ESRGAN*Real-ESRGAN*

BSRGAN*BSRGAN* RealBasicVSR*RealBasicVSR* AnimeSRAnimeSR VQD-SR (Ours)VQD-SR (Ours)touch/50

Input BasicVSR* PDM* Real-ESRGAN*

BSRGAN* RealBasicVSR* AnimeSR VQD-SR (Ours)

eva/50 BSRGAN*BSRGAN* RealBasicVSR*RealBasicVSR* AnimeSRAnimeSR VQD-SR (Ours)VQD-SR (Ours)

InputInput BasicVSR*BasicVSR* PDM*PDM* Real-ESRGAN*Real-ESRGAN*

Input BasicVSR*BasicVSR* PDM*PDM* Real-ESRGAN*Real-ESRGAN*

BSRGAN*BSRGAN* RealBasicVSR*RealBasicVSR* AnimeSRAnimeSR VQD-SR (Ours)VQD-SR (Ours)tom_and_jerry/100

InputInput BasicVSR*BasicVSR* PDM*PDM* Real-ESRGAN*Real-ESRGAN*

BSRGAN*BSRGAN* RealBasicVSR*RealBasicVSR* AnimeSRAnimeSR VQD-SR (Ours)VQD-SR (Ours)daria/30

Figure 10. Qualitative comparisons with SOTA methods. ‘∗’ denotes fine-tune on animation dataset AVC-Train [8]. Our VQD-SR is
capable to restore clear details.
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Figure 11. Qualitative comparisons with SOTA methods. ‘∗’ denotes fine-tune on animation dataset AVC-Train [8]. Our VQD-SR is
capable to recover visually natural and sharper lines with fewer artifacts.
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Figure 12. Qualitative comparisons with SOTA methods. ‘∗’ denotes fine-tune on animation dataset AVC-Train [8]. Our VQD-SR is
capable to handle some intended scenarios (e.g., the out-focus background blur) with fewer over-sharp artifacts. The red crops indicate
objects in the out-focus background which should be naturally smooth and the green crops indicate the foreground objects which should
be clear and sharp.
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Figure 13. Ablation study of HR-SR enhancement for different VSR methods.
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Figure 14. Visual comparison of different SR models for HR-SR
enhancement in animation domain.
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Figure 15. Extend HR-SR enhancement strategy to natural videos.
Complex textures and irregular illumination conditions lead to am-
plified illumination artifacts (row 1), contaminated details (row 2),
and over-sharp textures (row 3).


