
GECCO: Geometrically-Conditioned Point Diffusion Models

Michał J. Tyszkiewicz1 Pascal Fua1 Eduard Trulls2
1École Polytechnique Fédérale de Lausanne (EPFL) 2Google Research, Zurich

michal.tyszkiewicz@epfl.ch pascal.fua@epfl.ch trulls@google.com

1. Experimental details

For simplicity we measure training in terms of gradient
updates rather than dataset epochs.

Unconditional ShapeNet [7]. We use the download
links provided by the PointFlow paper [7] directly. Their
ShapeNet models contain 100k points: we subsample them
to 2048 points while training, as explained in the paper. We
train our models for 500k steps, with batch size of 64, and
evaluate the model every 10k steps. For this evaluation we
run a simplified variant of the benchmark described in sec-
tion 4.1, which uses only the chamfer distance to pick the
best checkpoint over the validation set – a variant of early
stopping.

ShapeNet-vol [5]. We use the download links provided by
the authors of OccNet [5], which contain prerendered im-
ages in addition to point clouds. Their point clouds are al-
ready subsampled to 2048 points. We train our models for
500k steps, with batch size of 48 and evaluate the model
every 10k steps with a simplified version of the benchmark
described in 4.2 not using ICP and with a random subset of
the validation set. Since we observed no overfitting, we do
not do early stopping.

Taskonomy [8]. The dataset comes in 4 sizes: tiny,
medium, full and full-plus. We noticed that full-plus con-
tains certain scenes with incomplete/faulty scans. We train
our model for 1M steps on the full variant and evaluate it on
a randomly sampled 1024-element subset of the ‘validation’
split every 10k steps - the subsampling is to save computa-
tion. Note that the monocular depth baseline of [6] was also
trained (by the authors) on the Taskonomy dataset.

We use the same evaluation procedure as for ShapeNet-
vol, this time with 8192 examples, and observe no overfit-
ting, so we report numbers for the final checkpoint. This
means that the results over ‘validation’ and over ‘test’
should be equivalent, up to uniformity in the dataset split,
and report both in the paper.

However, we notice that performance is lower on the
‘test’ split, particularly in terms of the mean, and not
the median. We trace this discrepancy to two out-of-

distribution scenes in the ‘test’ subset: ‘vacherie’, a residen-
tial apartment with very high ceilings which GECCO mis-
scales by a factor of 2×, and ‘german’, a gym filled with
large windows and mirrors, resulting in ambiguous depth
(see Fig. 3). Note that the monocular baseline predicts rel-
ative depth, which we then rescale using the ground truth,
which makes it largely immune to such outliers. In fact, the
large difference in performance between GECCO without
ICP and with ICP is mostly explained by mis-estimating the
scale of the scene, which the baseline doesn’t suffer from,
due to its use of ground truth scale. This is also likely the
reason why the baseline performs worse if ICP estimates
both scale and rotation – as explained in the paper, we dis-
able scale estimation for it.

2. Unconditional evaluation metrics
Here we define the metrics of coverage (COV), mini-

mum matching distance (MMD) and 1-nearest neighbour
accuracy (1−NNA). They are equivalent to those used in
[7], but using a different notation. We assume n given ref-
erence point clouds from the test set Sr = {p1, ..., pn}, n
samples generated by the model Sg = {q1, ..., qn}, and a
distance function D(·, ·) which can be either CD or EMD
(defined in main text).

Coverage considers the distances between p ∈ Sr and
q ∈ Sg and measures the fraction of p which are the nearest
neighbour of some q:

COV(Sr,Sg) =
1

n∣∣∣∣∣
{
q ∈ Sr :

(
∃

p∈Sg

q = argmin
q̂∈Sr

D(q̂, p)

)}∣∣∣∣∣ . (1)

Mean matching distance measures the average distance
between a sample and its nearest reference point

MMD(Sr,Sg) =
1

n

∑
p∈Sr

min
q∈Sg

D(p, q). (2)

1-nearest neighbour accuracy measures the accuracy of a
classifier distinguishing between elements of Sr and Sg by
returning the class of the nearest example in Sr∪Sg−{u},

where u is the element under consideration itself. We de-
fine this formally by introducing the asymmetricH(Sa,Sb)
which counts the a ∈ Sa correctly classified w.r.t. the union
of Sa and Sb and then define 1−NNA as the average of
H applied in both directions. We introduce Sa,Sb, u and v
to emphasize that in the final equation H is applied in both
directions.

H(Sa,Sb) =

∣∣∣∣∣
{
u ∈ Sa :

[
argmin

v∈(Sa∪Sb−{u})
D(u, v) ∈ Sa

]}∣∣∣∣∣
(3)

1−NNA(Sr,Sg) =
1

2n
(H(Sr,Sg) +H(Sg,Sr)) (4)

We note that EMD is usually approximated due to its
computational cost, and that CUDA-based implementations
may vary drastically; we use PyTorchEMD.

3. Additional visualizations
We invite the reader to view the video included in this

supplementary material for conditional and unconditional
samples from ShapeNet, as well as for image-conditional
samples from Taskonomy. On the following pages of this
document, in Fig. 1 we show additional unconditional sam-
ples from models trained on the ShapeNet, compared with
baselines [4, 1]. In Fig. 2 we show additional samples
from the image-conditional model trained on the Taskon-
omy dataset, along with the results of their upsampling.
Note that we upsample the point clouds with the technique
introduced in sec. 4.4 of the main paper, and how showcase
it in the image-conditional case. Due to performance issues
with the point cloud renderer we render the results upsam-
pled only by 5x, but GECCO itself works equally well with
100k points, as shown in the main paper.

4. Efficient upsampling
During upsampling by inpainting, for optimal perfor-

mance, it is preferable to keep the network’s input distribu-
tion as close as possible to that at training time. This means
that ideally, we would want m = n+1, where n and m are
the cardinality of the original and upsampled point clouds,
respectively. Note that a cloud can be upsampled by a factor
of f , to (1 + f)n points, by repeating that procedure f × n
times and concatenating the results. This however is as ex-
pensive as generating a cloud of n points f × n times from
scratch.

Fortunately, the Set Transformer [3] architecture enables
a workaround which brings the cost down to that of sam-
pling a cloud of f × n points once. Since the points do
not interact directly with each other, but rather via the in-
ducers (see the main paper and [3] for definition), if we
make the assumption that in the limit of large n the influ-
ence of any single point on the inducers is negligible, we
can reverse-diffuse many new (inpainted) points in parallel,

with shared inducer state. This leads to a simple algorithm
starting from the conditioning set {p}σ=0

1..n and the pure noise
inputs {p}σ=σmax

n..m . At each step t of reverse diffusion:

1. The conditioning input is diffused to σt to obtain
{p}σt

1..n.

2. The score network is evaluated on {p}σt
1..n. The score

estimate is discarded and instead we cache the activa-
tions of the inducers across the network’s layers.

3. The score network is ran again, this time on {p}σt
n..m,

but with the inducer activations provided by the cache
from point 2. We obtain the score for the inpainted
points n..m.

4. We update {p}n..m as usual, using the score from point
3.

The results provided in the main paper and here are ob-
tained by the naive procedure, upsampling multiple times
with a context of 1

2n = 1024 but we also release code im-
plementing the improved scheme described here.

5. Dataset licenses

ShapeNet. The original ShapeNet [2] dataset of 3D meshes
is licensed for non-commercial use, with clauses allowing
for redistribution of derived assets. Our use of derived
datasets released with [7] and [5] fulfills these provisions.

Taskonomy. Our dataset of real world imagery is derived
from the data released with Taskonomy [8], which allows
non-commercial use in its license. Bound by the license, we
are not able to release our derivatives until authorized by the
authors of [8]. Depending on their permission, we intend to
release either our dataset or the code to re-generate it from
the original files Taskonomy files.

6. Emoji license

In the video material we use an emoji () from the Noto
emoji bank, licensed under Apache 2.0 license.

https://github.com/daerduoCarey/PyTorchEMD
https://shapenet.org/terms
https://github.com/StanfordVL/taskonomy/blob/9f814867b5fe4165860862211e8e99b0f200144d/data/LICENSE
https://github.com/googlefonts/noto-emoji/tree/934a5706f1f3dd2605c4d9b5d9162fd7f89d8702
https://github.com/googlefonts/noto-emoji/tree/934a5706f1f3dd2605c4d9b5d9162fd7f89d8702

G
T

G
E

C
C

O
Sh

ap
eG

F
[1

]
D

PM
[4

]
G

T
G

E
C

C
O

Sh
ap

eG
F

[1
]

D
PM

[4
]

G
T

G
E

C
C

O
Sh

ap
eG

F
[1

]
D

PM
[4

]

Figure 1: Unconditional point cloud synthesis on ShapeNet. All examples contain 2048 points.

Im
ag

e
G

T
(2

04
8)

G
E

C
C

O
(2

04
8)

G
E

C
C

O
(1

02
40

)
G

T
(2

04
8)

G
E

C
C

O
(2

04
8)

G
E

C
C

O
(1

02
40

)

Figure 2: Image-conditional point cloud synthesis and upsampling on the test set of Taskonomy. We render the point
clouds with smaller point radii, to highlight the difference made by upsampling. Note how in column 4 GECCO is tricked by
a mirror, on the left side.

(a) Source image (b) GT depth (c) GT POV (d) GECCO POV (e) [6] POV (f) GT BEV (g) GECCO BEV (h) [6] BEV

Figure 3: Outliers in Taskonomy. We showcase the top 5 test images where the difference in chamfer distance is most
in favor of the monocular baseline (top) and GECCO (bottom). GECCO suffers from mirrors (top 4 rows, ‘german’) and
unusual room dimensions (last row, ‘vacherie’), while the baseline cannot resolve areas of undefined depth, such as in the
two bottom rows.

References
[1] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun

Hao, Serge Belongie, Noah Snavely, and Bharath Hariharan.
Learning gradient fields for shape generation. In European
Conference on Computer Vision, pages 364–381. Springer,
2020. 2, 3

[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012,
2015. 2

[3] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-
ungjin Choi, and Yee Whye Teh. Set transformer: A frame-
work for attention-based permutation-invariant neural net-
works. In International conference on machine learning,
pages 3744–3753. PMLR, 2019. 2

[4] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3d point cloud generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2837–2845, 2021. 2, 3

[5] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebas-
tian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceed-
ings IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019. 1, 2

[6] Alexander Sax, Jeffrey O Zhang, Bradley Emi, Amir Zamir,
Silvio Savarese, Leonidas Guibas, and Jitendra Malik. Learn-
ing to navigate using mid-level visual priors. In Conference
on Robot Learning, pages 791–812. PMLR, 2020. 1, 5

[7] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 4541–4550, 2019. 1, 2

[8] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy: Dis-
entangling task transfer learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
3712–3722, 2018. 1, 2

