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A. Dataset Details
We enumerate the validation and testing split sizes of all datasets in Tab. 1. We make two small modifications to the

standard datasets as described in CoOp [16]: (1) We discard the “BACKGROUND Google” and “Faces easy classes” from
the Caltech101 dataset, and (2) For the UCF101 dataset, we consider the middle frame of each video as our image sample.

Table 1: Dataset details for the 19 datasets used in this study.

Dataset Classes Val Test

UCF-101 101 1898 3783
CIFAR-10 10 10000 10000

CIFAR-100 100 10000 10000
Caltech101 100 1649 2465
Caltech256 257 6027 9076
ImageNet 1000 50000 50000
SUN397 397 3970 19850

FGVCAircraft 100 3333 3333
Birdsnap 500 7774 11747

StanfordCars 196 1635 8041
CUB 200 1194 5794

Flowers102 102 1633 2463
Food101 101 20200 30300

OxfordPets 37 736 3669
DTD 47 1128 1692

EuroSAT 10 5400 8100
ImageNet-Sketch 1000 50889 50889

ImageNet-R 200 30000 30000
Country211 211 10550 21100

B. Details about Support Set Curation Strategies
We include further technical details about our two support set curation strategies—Stable Diffusion Generation and

LAION-5B Retrieval.
Stable Diffusion Generation. For all our experiments with the Stable Diffusion model, we use the stable-diffusion-v1-4
checkpoint with a 9.5 guidance scale [8], 85 diffusion steps and 512×512 output resolution. We then downscale these images
to CLIP’s input resolution of 224×224.
LAION-5B Retrieval. For all our experiments, we rank all images in the LAION-5B corpus based on their image-text
similarity with the given class textual prompt. We use the LAION-5B pre-constructed index that leverages the CLIP-ViT-
L/14 model. Finally, since the images might be of varying resolutions, we pre-process them to CLIP’s input resolution of
224×224.

C. Few-shot learning with TIP-X
In Sec 4.3 of the paper, we adapt TIP-X to the few-shot training-free adaptation regime, and compare with the SoTA model

TIP-Adapter. We now show the extended results on all 11 datasets in Fig. 1. On average, we outperform TIP-Adapter by
0.91% across all shots.
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Figure 1: Results for the training-free few-shot regime across 11 datasets.
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D. Details about Support Set Sizes
For our main results in Sec 4.1 of the paper, we use a fixed number of support set samples per dataset. In Tab. 2,

we enumerate the number of support set samples used per dataset. As shown in Sec 4.4, the support set size can impact
performance significantly—the nature of these impacts is dataset-specific.

Table 2: Support Set Sizes

Dataset Support Set Size

UCF-101 5858
CIFAR-10 50

CIFAR-100 4700
Caltech101 101
Caltech256 3084
ImageNet 36000
SUN397 397

FGVCAircraft 7900
Birdsnap 39000

StanfordCars 980
CUB 400

Flowers102 3162
Food101 3434

OxfordPets 2627
DTD 188

EuroSAT 150
ImageNet-Sketch 42000

ImageNet-R 10200
Country211 844
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E. Details about Baselines
For our main zero-shot/name-only training-free CLIP-based experiments, we use six main baselines—Zero-shot CLIP [12],

CALIP [5], CLIP+DN [18], VisDesc [10], CuPL [11] and CuPL+e.
Zero-shot CLIP. For Zero-shot CLIP, we directly use the model weights released by OpenAI and the official inference
scripts for reproducing results on different datasets1. For benchmarking all our results, we use the 7-prompt ensemble set
used by TIP-Adapter [15] for all datasets. The 7 prompt templates in the ensemble are: “itap of a <class>.”, “a origami
<class>.”, “a bad photo of the <class>.”, “a photo of the large <class>.”, “a <class> in a video game.”, “art of
the <class>.”, and “a photo of the small <class>.”.
CALIP details. Due to the unavailability of publicly released code at the time of writing this paper, we re-implement
the CALIP baseline, following the description in [5]. We provide access to our re-implementation as part of our released
codebase.
CLIP+DN details. For CLIP+DN, we use the official code2 released by the authors on all datasets. As specified in the paper,
we (i) use 100 random unlabeled validation samples for the mean estimation for DN, and (ii) report the average accuracy
across 5 different random seeds.
VisDesc details. For VisDesc, we use the official code3 released by the authors on all datasets. We use their default prompt
settings for generating the GPT-3 descriptors.
CuPL details. For CuPL, we use the official code4 released by the authors on all datasets. The list of pre-prompts used as
inputs to GPT-3 for different datasets are listed in Tab. 3 and Tab. 4.
CuPL+e details. For CuPL+e, we simply concatenate the 7-prompt ensemble embeddings of each class with the custom
GPT-3 generated CuPL embeddings of that particular class. We then average all the embeddings within a class to generate
the textual embedding for that class. Then, we proceed as standard to construct the classifier weight matrix by stacking all
class text embeddings.

E.1. Transfer to other VLMs

We can transfer all the aforementioned baselines to different VLMs by simply swapping out CLIP’s frozen image and
text encoders with those of TCL [14] and BLIP [9]. For the TCL5 experiments, we use the standard ViT-B/16 base model
that is fine-tuned for retrieval on MS-COCO, released by the authors here. For the BLIP6 experiments, we use the standard
ViT-B/16 base model fine-tuned for retrieval on MS-COCO, released by the authors here.

1https://github.com/openai/CLIP
2https://github.com/fengyuli2002/distribution-normalization
3https://github.com/sachit-menon/classify by description release
4https://github.com/sarahpratt/CuPL
5https://github.com/uta-smile/TCL
6https://github.com/salesforce/BLIP
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Table 3: CuPL hand-written prompts (1/2)

Dataset GPT-3 prompts

UCF101 “What does a person doing {} look like”
“Describe the process of {}”
“How does a person {}”

CIFAR10 “Describe what a {} looks like”
“How can you identify {}?”
“What does {} look like?”
“Describe an image from the internet of a {}”
“A caption of an image of {}: ”

CIFAR100 “Describe what a {} looks like”
“How can you identify {}?”
“What does {} look like?”
“Describe an image from the internet of a {}”
“A caption of an image of {}: ”

Caltech101 “Describe what a {} looks like”
“What does a {} look like”
“Describe a photo of a {}”

Caltech256 “Describe what a {} looks like”
“What does a {} look like”
“Describe a photo of a {}”

ImageNet “Describe what a {} looks like”
“How can you identify {}?”
“What does {} look like?”
“Describe an image from the internet of a {}”
“A caption of an image of {}: ”

SUN397 “Describe what a {} looks like”
“How can you identify a {}?”
“Describe a photo of a {}”

FGVCAircraft “Describe a {} aircraft”

Birdsnap “Describe what a {}, a species of bird, looks like”
“What does a {} look like”
“Visually describe a {}, a type of bird”
“A caption of an image of a {}, a type of bird”
“Describe the appearance of a {}”
“What are the prominent features to identify a {} bird”

StanfordCars “How can you identify a {}”
“Description of a {}, a type of car”
“A caption of a photo of a {}:”
“What are the primary characteristics of a {}?”
“Description of the exterior of a {}”
“What are the identifying characteristics of a {}, a type of car?”
“Describe an image from the internet of a {}”
“What does a {} look like?”
“Describe what a {}, a type of car, looks like”
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Table 4: CuPL hand-written prompts (2/2)

Dataset GPT-3 prompts

CUB “Describe what a {}, a species of bird, looks like”
“What does a {} look like”
“Visually describe a {}, a type of bird”
“A caption of an image of a {}, a type of bird”
“Describe the appearance of a {}”
“What are the prominent features to identify a {} bird”

Flowers102 “What does a {} flower look like”
“Describe the appearance of a {}”
“A caption of an image of {}”
“Visually describe a {}, a type of flower”

Food101 “Describe what a {} looks like”
“Visually describe a {}”
“How can you tell that the food in this photo is a {}?”

OxfordPets “Describe what a {} pet looks like”
“Visually describe a {}, a type of pet”

DTD “What does a {} material look like?”
“What does a {} surface look like?”
“What does a {} texture look like?”
“What does a {} object look like?”
“What does a {} thing look like?”
“What does a {} pattern look like?”

EuroSAT “Describe an aerial satellite view of {}”
“How does a satellite photo of a {} look like”
“Visually describe a centered satellite view of a {}”

ImageNet-Sketch “Describe how a black and white sketch of a {} looks like”
“A black and white sketch of a {}”
“Describe a black and white sketch from the internet of a {}”

ImageNet-R “An art drawing of a {}”
“Artwork showing a {}”
“A cartoon a {}”
“An origami of a {}”
“A deviant art photo depicting a {}”
“An embroidery of a ”
“A graffiti art showing a {}”
“A painting of a {}”
“A sculpture of a {}”
“A black and white sketch of {}”
“A toy of a {}”
“A videogame of a {}”

Country211 “Visually describe what {} looks like”
“What does the landscape of {} look like”
“Describe a photo taken in {}”
“How does a typical photo taken in {} look like”
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F. More SuS visualisations
In Fig. 2, we provide further support set samples across different datasets curated using both SuS-LC and SuS-SD methods.

(a) Birdsnap, Acadian Flycatcher (b) Caltech101, Soccer Ball

(c) DTD, Chequered (d) EuroSAT, Residential

(e) FGVCAircraft, A320 (f) Food101, Breakfast Burrito

(g) Flowers102, Water Lily (h) OxfordPets, Persian Cat

(i) StanfordCars, Rolls Royce Ghost (j) UCF101, Cricket Shot

Figure 2: Support samples from the generated SuS-SD, retrieved SuS-LC and true training distribution for different
datasets. For each subfigure, the ordering of figures is—SuS-LC, SuS-SD, Train. We label each figure with its source dataset
and class name.
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G. Hyperparameter Settings
We provide the hyperparameter settings for obtaining our main results from Tab 2 in the main paper in Tab. 5. For

our hyperparameters, we conduct a search over [0.1, 50] for α, [1, 50] for β and [0.1, 30] for γ. In the main paper, we
have a hyperparameter sensitivity test which ensures that the variance in accuracy values is not too large as we vary our
hyperparameters.

Table 5: Hyperparameter settings for the 19 datasets.

Dataset α β γ

UCF-101 0.10 8.59 0.10
CIFAR-10 5.09 5.41 0.10

CIFAR-100 0.10 1.49 0.10
Caltech101 0.10 1.27 0.10
Caltech256 0.10 12.76 0.10
ImageNet 10.08 39.46 0.10
SUN397 2.60 8.35 0.10

FGVCAircraft 2.60 24.52 0.69
Birdsnap 48.53 22.55 0.69

StanfordCars 0.10 1.58 0.10
CUB 0.10 8.84 0.10

Flowers102 0.10 2.72 0.10
Food101 17.56 49.02 0.10

OxfordPets 10.08 41.91 1.29
DTD 5.09 23.79 0.70

EuroSAT 2.60 1.00 0.10
ImageNet-Sketch 30.04 38.48 0.69

ImageNet-R 2.60 30.65 0.70
Country211 12.57 22.31 0.10

Results without tuning. We also report the results on all 19 datasets without tuning our hyperparameters in Tab. 6. For
this, we fix the hyperparameters to be α=0.1, β=1.0, γ=0.1. Even without hyperparameter tuning, we see large gains over
Zero-shot CLIP.

Table 6: Zero-shot/name-only results with fixed hyperparameters (no hyperparameter tuning)
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ZS-CLIP 55.56 73.10 40.58 85.92 78.98 60.31 59.11 16.71 30.56 56.33 41.31 62.89 74.11 81.82 41.01 26.83 35.42 59.34 13.42 56.41 52.27

SuS-X-SD-P 61.41 74.68 43.45 89.57 80.46 61.64 62.96 18.84 36.20 57.19 48.90 66.18 77.45 85.17 48.76 37.11 36.05 61.69 14.26 60.57 55.89

SuS-X-SD-C 61.51 74.65 43.53 89.53 80.50 61.65 62.95 19.11 36.36 57.18 48.84 66.26 77.53 85.17 48.35 37.27 35.88 61.69 14.25 60.59 55.91

SuS-X-LC-P 61.49 74.62 44.30 89.57 80.56 61.80 63.02 20.04 36.75 57.19 48.81 66.87 77.36 85.31 47.87 37.49 36.25 61.62 14.20 60.73 56.01

SuS-X-LC-C 60.51 74.61 44.07 89.49 80.59 61.53 62.94 19.23 36.25 57.05 49.02 66.83 77.35 82.27 47.04 36.78 35.76 60.91 14.21 60.09 55.60

Analysis of hyperparameters. From Tab. 5, we note that for some datasets, the weight for the inter-modal distance term γ is
dominated by the weight for the intra-modal distance term α. We analyse this in depth, and show that despite this disparity,
using inter-modal distances still brings gains. Tab. 7 reports results on these datasets (for which α>>γ) using their optimal
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hyperparameters (α>γ), fixed hyperparameters (α=γ=0.1), and removed inter-modal contributions (γ=0). Apart from the
unhighlighted rows, it is always beneficial to use small inter-modal distance contributions over neglecting them (see green
rows). Hence, we conclude that both these terms are important for bringing the large performance gains of our model.

Table 7: Analysis of α and γ values.

Dataset Optimal Fixed&Equal Inter-modal only
α>γ α=γ=0.1 α=optimal, γ=0

ImageNet 61.89 61.80 61.30
ImageNet-Sketch 37.83 36.25 36.10

ImageNet-R 62.10 61.62 61.30
OxfordPets 86.59 85.31 85.00
Birdsnap 38.50 36.75 37.70
Food101 77.62 77.53 77.55

H. Discussion on SuS vs CuPL/VisDesc
As discussed in the main paper, CuPL and VisDesc are two name-only transfer methods that leverage a large pre-trained

language model (GPT-3) to enhance the textual prompts used for zero-shot classification. On the other hand, our SuS con-
struction strategies endow the zero-shot model with rich visual information to discriminate between different categories.

We note that text alone cannot model the rich information in the world [2, 1]. Consider a task of classifying between two
bird species—“Florida Scrub Jay” and “Blue Jay”. The difference is all in the subtle visual details—blue jays have a crest
and distinct black markings on their necks. This level of rich visual information is hard to extract from textual descriptions of
class names. Hence, the main advantage of SuS is in imparting this expressive visual information for discriminating between
fine-grained categories. We verify this empirically in Fig. 3 depicting large gains over CuPL+e (our best performing baseline)
in fine-grained datasets like Birdsnap, Flowers102, OxfordPets etc (Full results in Tab. 11 below.).

0.0 2.5 5.0 7.5
Absolute improvement (%)

oxfordpets

fgvcaircraft

flowers102

birdsnap

dtd

eurosat

Gains over CuPL+e on fine-grained tasks

Figure 3: Improvement for fine-grained tasks.
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I. Compute Cost Comparison
We compare the computational requirements of our SuS-X and the baselines in Tab. 8—for each method, we measure the

time and memory requirements for one ImageNet class i.e. on 50 test images. For CuPL, VisDesc and SuS-X, we measure
the construction time required for curating the enhanced textual prompts and support sets. Note that in practical applications,
it is typical to cache the curated support sets/prompts for each class, thereby amortising costs across queries. We note that
our SuS-X models offer the most competitive performance-efficiency tradeoff when comparing the compute requirements
and accuracy values.

Table 8: Compute requirements.

Method Construction Inference GPU ImageNet
Time Time Memory Accuracy

Zero-shot – 10.22ms 2.2GB 60.32
CALIP – 121.26ms 24GB 60.57

CLIP+DN – 10.22ms 2.2GB 60.16
VisDesc ∼3s 10.22ms 2.2GB 59.68
CuPL+e ∼3s 10.22ms 2.2GB 61.64

SuS-X-SD ∼60s 10.50ms 3.2GB 61.84
SuS-X-LC ∼2s 10.50ms 3.2GB 61.89
*Tested on single Nvidia A100-80GB GPU with one ImageNet class (50 test images).

J. Diversity of CuPL and Photo prompting strategies
In this section, we describe in detail the computation of the diversity metric used in Sec 4.4 of the paper.
We assume access to a support set S of size NC, where there are C classes and N support samples per class. We denote

the support subset of a given class i as Si = {si,1, si,2, . . . , si,N}, where si,j denotes the jth support sample for class i.
Corresponding to these support subsets, we denote the features of Si as Fi (using CLIP’s image encoder):

Fi,j = CLIPImageEncoder(si,j), Fi,j ∈ Rd, i ∈ [1, C], j ∈ [1, N ]

Fi = Concat([Fi,1, Fi,2, . . . , Fi,N ]), Fi ∈ RN×d

We now compute the mean pairwise cosine similarity between all support samples within a class i.e. for class i, we
compute:

PCSi =

∑N
j=1

∑N
k=1 Fi,jF

T
i,k

N2

The intuition is that if all the support samples within a class are similar to each other, then the support set is less diverse.
Hence, a higher value of PCSi implies a lower diversity. We then compute the mean PCS over all classes as:

MPCS =

∑C
i=1 PCSi

C

Finally, we define diversity to be:
Diversity = 1− MPCS
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K. Further Analyses and Discussions
We conduct some further ablation studies to analyse our method with more rigour. Due to lack of space in the main paper,

we include these ablations here, however these are vital analyses which delineate important properties of our method.

K.1. Contribution of intra-model and inter-modal distances

In Sec 3.2 of the paper, we describe our TIP-X method that utilises image-text distances as a bridge for computing image-
image intra-modal similarities. We refer to the main equation for computing TIP-X logits again, highlighting the importance
of each term:

TXL = fWT︸ ︷︷ ︸
1. zero-shot component

+ αAL︸ ︷︷ ︸
2. intra-modal distance component

+ γψ(−M)L︸ ︷︷ ︸
3. inter-modal distance component

Zero-shot CLIP utilises only the zero-shot term (1) above. TIP-Adapter utilises the zero-shot and intra-modal distance
terms (1+2). Our method uses all three terms (1+2+3). We further ablate this design choice to break down the gains brought
forth from each individual term. In Tab. 9, we show the performance gains from each of these terms with our best performing
SuS-X-LC model across 19 datasets. We observe large gains from inter-modal and intra-modal distances independently over
just using the zero-shot term. Further, both these distances provide complementary information to each other, and hence can
be productively combined leading to the best results.

Table 9: Contribution of intra-modal and inter-modal distances.

Dist. terms used 1 1+3 1+2 1+2+3
(Zero-shot) (Inter-modal) (Intra-modal) (Both)

Average Acc. 52.27 56.30 56.56 56.87
Gain 0 +4.03 +4.29 +4.60

K.2. Comparing name-only SuS-X to few-shot methods

In Sec 4.1 of the main paper, we showcased state-of-the-art results with our SuS-X model in the name-only setting.
Recollect that in this setting, we use no images from the true target distribution. Here, we evaluate how well our SuS-X
model fares against methods that use image samples from the true target distribution. We compare our best performing
SuS-X-LC method (uses no images from target distribution) with 16-shot TIP-Adapter and 16-shot TIP-X (both using 16
labelled images per class). From Tab. 10, we see that SuS-X-LC is competitive (in green) against these few-shot adaptation
methods, despite using no target task images. There are however cases where SuS-X-LC severely underperforms the few-shot
methods—this is due to the domain gap between the SuS images and the true labelled images (refer Sec 4.4 of the paper).

Table 10: SuS-X against few-shot labelled methods.

Dataset Zero-shot SuS-X-LC TIP-Adapter TIP-X
(name-only, ours) (few-shot) (few-shot, ours)

ImageNet 60.31 61.89 62.01 62.16
Food101 74.11 77.62 75.82 75.96

OxfordPets 81.82 86.59 84.50 87.52
Caltech101 85.92 89.65 90.43 90.39
Flowers102 62.89 67.97 89.36 90.54

FGVCAircraft 16.71 21.09 29.64 29.61

K.3. Intuitions for best performing configurations

From Tab 5 of the main paper, we note that our best name-only results are achieved with the LC-Photo and SD-CuPL SuS
construction strategies. A natural question arises: “Why do the two SuS construction methods require different prompting
strategies for achieving their best results?”. We attempt to answer this question via careful inspection of the support sets
curated from these strategies. For this case study, we inspect the support sets for the CIFAR-10 dataset.

12



(a) SuS-LC, Photo, Airplane (b) SuS-LC, CuPL, Airplane

(c) SuS-LC, Photo, Bird
(d) SuS-LC, CuPL, Bird

(e) SuS-SD, Photo, Airplane (f) SuS-SD, CuPL, Airplane

(g) SuS-SD, Photo, Bird (h) SuS-SD, CuPL, Bird

Figure 4: Uncovering the intuitions for different prompting configurations. We showcase some support samples using
different prompting configurations for two CIFAR-10 classes—airplane and bird. The key takeaways upon inspecting these
samples are enumerated below.

From Fig. 4, we can draw two key takeaways regarding the best prompting strategies for the two SuS curation methods:

1. LAION-5B retrieval. The support sets constructed with CuPL prompts are largely divergent from the “true” distribu-
tion of natural semantic images of the target concepts/classes. This can be noted from the right panels of the first two
rows in Fig. 4—this disparity in the retrieved support set images leads to a large domain gap to the target distribution,
hence resulting in poorer performance than the Photo prompting strategy. Further, since the LAION-5B support sets
consist of natural images i.e. images available on the web, the LAION-5B Photo support set images are closer to the
true target distribution of images.

2. Stable Diffusion Generation. The support sets generated using Stable Diffusion represent a synthetic data distribu-
tion i.e. there is an innate distribution shift from the target distribution images owing to the target datasets (mostly)
consisting of natural images. Hence, the Stable Diffusion support sets are inherently at a disadvantage compared to the
LAION-5B support sets. However, within the constructed Stable Diffusion support sets, the CuPL prompting strategy
mildly wins over the Photo strategy since it helps generate a more diverse set of images (consisting of more expansive
lighting conditions, background scenes etc.)—this diversity helps reduce the domain gap to the target dataset to a small
extent. This phenomenon of added diversity in synthetic datasets aiding downstream performance has also been noted
in previous works [7].
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L. Extended Results on all Datasets
In Tab. 11, we report the accuracies obtained on each of the 19 individual datasets for all our baselines, and our SuS-X

model variants with CLIP as the VLM. We also report the average accuracy obtained on the 11 dataset subset used in previous
CLIP adaptation works [15, 4, 16]. In Tab. 12, we report all the results with the TCL model as the VLM, and in Tab. 13, we
report the results with the BLIP model as the VLM.

Table 11: Training-free zero-shot/name-only results across model configurations and datasets. We report average results
using both the 11 dataset subset used by previous works on few-shot adaptation [15, 4, 16] and the entire 19 dataset suite. For
the CALIP baseline, we report numbers from the original paper (denoted with a subscript o) as well as our re-implementation
(denoted with a subscript (r)). We refer to the Zero-shot CLIP model as ZS-CLIP and CuPL+ensemble baseline as CuPL+e.
We use the CuPL+ensemble prompts for CLIP’s text classifier in this experiment. For both variants of our models, we append
P or C to the name to distinguish between Photo and CuPL prompt strategies. For instance, SuS-X-LC-P refers to the SuS-X
model with LC curation using the Photo strategy. All models use the ResNet-50 visual backbone. The best results for each
dataset are bolded and the second best are underlined. This table contains the full set of values used for generating Fig 4a
and populating Tab 2 in the paper.
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ZS-CLIP 55.56 73.10 40.58 85.92 78.98 60.31 59.11 16.71 30.56 56.33 41.31 62.89 74.11 81.82 41.01 26.83 35.42 59.34 13.42 56.41 52.27

CALIPo 61.72 – – 87.71 – 60.57 58.59 17.76 – 56.27 – 66.38 77.42 86.21 42.39 38.90 – – – 59.45 –

CALIPr 55.61 73.15 40.62 86.20 79.08 60.31 59.10 16.71 30.68 56.32 41.40 63.01 74.13 81.84 41.01 26.96 36.10 59.32 13.45 56.47 52.37

CLIP+DN 55.60 74.49 43.73 87.25 79.24 60.16 59.11 17.43 31.23 56.55 43.03 63.32 74.64 81.92 41.21 28.31 35.95 60.37 13.76 56.86 53.02

CuPL 58.97 74.13 42.90 89.29 80.29 61.45 62.55 19.59 35.65 57.28 48.84 65.44 76.94 84.84 48.64 38.38 35.13 61.02 13.27 60.30 55.50

CuPL+e 61.45 74.67 43.35 89.41 80.57 61.64 62.99 19.26 35.80 57.23 48.77 65.93 77.52 85.09 47.45 37.06 35.85 61.17 14.27 60.45 55.76

VisDesc 58.47 73.22 39.69 88.11 79.94 59.68 59.84 16.26 35.65 54.76 48.31 65.37 76.80 82.39 41.96 37.60 33.78 57.16 12.42 58.30 53.76

SuS-X-SD-P 61.72 74.71 44.14 89.65 80.62 61.79 62.96 19.17 36.59 57.37 49.12 67.97 77.59 86.24 49.35 38.11 36.58 62.10 14.26 61.08 56.32

SuS-X-SD-C 61.54 74.69 44.63 89.53 80.64 61.84 62.95 19.47 37.14 57.27 49.12 67.72 77.58 85.34 50.59 45.57 36.30 61.76 14.27 61.76 56.73

SuS-X-LC-P 61.49 74.95 44.48 89.57 80.62 61.89 63.01 21.09 38.50 57.17 48.86 67.07 77.62 86.59 49.23 44.23 37.83 62.10 14.24 61.72 56.87

SuS-X-LC-C 61.43 74.76 44.12 89.61 80.63 61.79 62.94 20.34 37.07 57.06 48.86 67.60 77.58 85.22 49.47 37.16 36.45 61.39 14.26 60.93 56.20
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Table 12: Training-free zero-shot/name-only results across model configurations using the TCL [14] architecture. For
our SuS-X models, we only use the two best configurations from the previous CLIP experiment i.e. SuS-X-SD with CuPL
strategy and SuS-X-LC with Photo strategy. This table contains the full set of values used for populating Tab 3 in the paper.
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ZS-TCL 35.29 82.33 50.86 77.65 61.90 35.55 42.12 2.25 4.51 1.53 7.63 28.30 24.71 20.63 28.55 20.80 24.24 46.05 1.42 28.84 31.38

CuPL 41.23 81.75 52.63 81.66 65.91 41.60 49.35 3.48 6.83 2.11 10.20 26.10 23.62 22.15 42.84 26.30 25.67 53.61 4.07 32.77 34.79

CuPL+e 41.63 82.07 52.66 81.29 66.46 41.36 49.98 3.51 6.60 2.11 9.80 26.91 24.84 21.17 41.96 25.88 26.36 53.36 3.68 34.82 32.79

VisDesc 42.53 82.30 51.89 77.00 66.51 40.40 51.18 3.21 5.69 2.91 8.96 25.13 27.16 24.58 34.28 21.27 27.05 49.26 3.57 31.77 33.94

SuS-X-SD-C 47.66 82.92 55.19 81.38 66.52 52.29 49.98 9.21 13.60 2.31 9.72 30.98 48.87 65.96 48.17 28.75 32.22 58.95 3.66 42.32 41.49

SuS-X-LC-P 50.28 83.14 57.47 81.38 66.80 52.77 49.97 10.98 17.93 2.57 9.77 30.04 48.06 69.96 46.63 36.90 36.28 57.58 3.72 43.59 42.75
*We use the official TCL-base checkpoint from here for these results.

Table 13: Training-free zero-shot/name-only results across model configurations using the BLIP [9] architecture. For
our SuS-X models, we only use the two best configurations from the previous CLIP experiment i.e. SuS-X-SD with CuPL
strategy and SuS-X-LC with Photo strategy. This table contains the full set of values used for populating Tab 3 in the paper.
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ZS-BLIP 50.49 86.68 61.72 92.13 82.17 50.59 54.22 5.40 10.21 54.71 14.95 40.15 54.21 59.04 44.68 44.10 43.69 70.93 5.84 49.97 48.73

CuPL 56.09 86.06 61.99 92.41 83.45 52.96 59.16 5.85 12.24 54.64 18.53 43.97 56.14 72.00 52.95 39.37 44.83 72.27 6.26 53.23 51.11

CuPL+e 55.61 86.33 62.16 92.29 83.59 53.07 59.38 6.27 12.18 54.89 18.63 43.72 57.10 71.73 53.30 41.48 45.34 72.40 6.42 53.53 51.36

VisDesc 53.42 86.78 60.47 92.04 81.53 50.94 55.85 6.30 11.69 54.64 16.65 42.71 58.50 69.22 47.45 42.25 43.30 68.62 6.01 52.12 49.91

SuS-X-SD-C 57.28 87.56 63.60 92.33 83.66 55.93 59.46 10.14 16.95 54.89 18.95 44.38 62.75 74.68 56.15 45.36 46.51 73.85 6.45 55.76 53.20

SuS-X-LC-P 59.90 88.28 64.43 92.29 83.61 56.75 59.39 11.82 23.78 54.94 19.24 43.97 64.14 79.72 55.91 51.62 48.53 73.42 6.44 57.31 54.64
*We use the official BLIP-base checkpoint from here for these results.

M. Results with different Visual Backbones
All our main results use the ResNet-50 [6] visual backbone for CLIP’s image encoder. In Tab. 14, we compare the

accuracies obtained on all 19 datasets using 2 different visual backbone model classes—ResNets [6] (ResNet-50, ResNet-
101) and Vision Transformers [3] (ViT-B/32, ViT-B/16). We observe that the accuracy values monotonically improve as we
increase the model capacity.

N. Results with different Text-to-Image Generation Models
We also experiment with different text-to-image generation models for support set generation to showcase the generalis-

ability and robustness of our method’s results. Tab. 15 depicts SuS-X-SD results by generating support sets using different
text-to-image generation models. The results presented in the main paper all use the Stable-Diffusion-v1.4 model, but we
also note similar gains across three other generative models.
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https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth


Table 14: Training-free name-only results across visual backbones. For this experiment, we use the default versions of our
SuS-X models: SuS-X-LC with Photo strategy and SuS-X-SD with CuPL strategy. This experiment uses the CuPL prompts
for CLIP’s text classifier. This table contains the raw data for generating ?? of the paper.
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RN50 SuS-X-LC 59.98 74.79 44.22 89.29 80.29 61.66 62.70 21.87 38.56 56.92 48.90 66.91 77.21 86.35 50.06 43.99 37.25 61.97 13.21 61.54 56.64
SuS-X-SD 59.48 74.21 44.33 89.25 80.27 61.65 62.58 19.92 37.00 57.14 49.10 67.32 77.02 85.09 51.00 47.69 37.25 61.73 13.30 61.65 56.59

RN101 SuS-X-LC 60.03 77.51 46.72 92.09 81.96 62.11 61.50 22.92 39.87 61.20 45.82 59.28 78.52 88.44 51.18 39.23 40.05 69.07 11.45 61.50 57.31
SuS-X-SD 57.84 76.97 46.01 92.09 81.96 62.18 61.61 21.66 35.60 61.05 45.93 60.90 78.41 86.56 51.95 39.23 40.47 68.94 11.41 61.23 56.88

ViT-B/32 SuS-X-LC 63.49 89.32 65.25 93.18 84.73 64.73 65.49 23.01 40.77 61.19 53.03 68.01 80.31 87.95 52.25 53.91 43.10 70.55 14.91 64.87 61.85
SuS-X-SD 63.20 88.39 64.84 93.18 84.73 64.71 65.47 21.66 38.97 61.12 53.52 68.17 80.24 86.81 51.89 53.91 43.27 70.42 14.91 64.58 61.55

ViT-B/16 SuS-X-LC 66.72 90.94 68.66 93.91 87.41 70.00 67.85 30.51 47.71 65.90 56.96 73.08 86.08 91.58 55.32 58.06 49.34 78.20 19.19 69.00 66.18
SuS-X-SD 66.59 89.88 68.47 93.96 87.45 69.88 67.73 28.68 45.53 66.13 57.11 73.81 86.08 90.57 54.55 57.49 49.51 78.22 19.28 68.68 65.84

Table 15: SuS-X-SD Results with additional T2I models.

T2I Model ImageNet EuroSAT DTD OxfordPets Average

ZS-CLIP (baseline) 60.31 26.83 41.01 81.82 52.49

StableDiffusion-1.4 (from main paper) 61.84 45.57 50.59 85.34 60.84 (+8.35%)

Kandinsky2.1 61.83 44.96 49.17 85.47 60.36 (+7.87%)
OpenJourney-4 61.81 45.00 50.71 85.17 60.67 (+8.18%)

Protogen-2.2 61.82 48.67 50.35 85.26 61.52 (+9.03%)

O. Fine-tuning SuS-X
Despite our work’s main focus being the training-free adaptation regime, we explore some preliminary results with fine-

tuning SuS-X on a few datasets. We compare both the training-free and the fine-tuned variants of SuS-X with other CLIP
adaptation methods that use full or partial (parameter-efficient fine-tuning) in Tab. 16. We note for some datasets, full/partial
fine-tuning methods perform better than training-free SuS-X. However, due to the domain gap between StableDiffusion/LAION-
5B curated data and real test data, the gains are not large (confirming prior work [7, 13]). Further, we note that full fine-tuning
and SuS-X are complementary, allowing a large boost in performance for SuS-X-F. On the other hand, we emphasise that the
goal of our work is to keep the approach flexible and scalable—one can apply SuS-X to an arbitrary number of rare categories
without training. This training-free approach can particularly benefit when the categories of interest vary frequently, render-
ing repetitive fine-tuning inefficient. Moreover, fine-tuning forces the model to fit a very specific task distribution, enforcing
forgetting of the model’s pre-trained performance on a wide array of tasks. Since SuS-X only requires target task class names
and does not fine-tune the model, we can cache the task-specific support sets a-priori and switch them dynamically based on
the task at hand, without causing catastrophic forgetting of CLIP’s pre-trained knowledge.

Table 16: Fine-tuning methods vs SuS-X.

Method ZS-CLIP FT-CLIP CoOp [17] CLIP-Adapter [4] SuS-X SuS-X-F
(No adaptation) (Full fine-tuning) (PromptTuning) (Adapters) (Ours) (Ours)

ImageNet 60.31 60.35 60.96 61.61 61.89 63.22
EuroSAT 26.83 55.37 52.12 57.00 44.23 59.22

DTD 41.01 50.35 45.66 49.29 49.23 52.30
OxfordPets 81.82 84.51 85.99 85.06 86.59 87.77
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