
ProbVLM: Probabilistic Adapter for Frozen Vison-Language Models

A. Additional Theoretical Support
We discuss Equation 4 from the main paper and how

we simplify the same to obtain a loss function suitable for
training deep learning models. Given an image and text
embedding pair (zV , zT ) (from frozen model) represent-
ing similar concepts, the output distributions from Ψ(·; ζ),
G(z; ẑV , α̂V , β̂V) and G(z; ẑT , α̂T , β̂T ) (later referred to
as GV(z)) and GT (z)) should match. This can be mea-
sured directly from the likelihood as, p(zv = zu), where
zv ∼ GV(z) and zu ∼ GT (z) as in [1] , i.e.,

p(zv = zu) :=

∫∫
GV(zv)GT (zu)δ(zv − zu)dzvdzu (1)

where δ(·) refers to the Dirac-delta distribution. The above
integral can be simplified further by defining ∆z = zv −
zu and seeking p(∆z) = 0. As both zv and zu are GGD
random variables, ∆z follows the distribution based on the
Bivariate Fox H-function [2] given by,

∆z ∼ 1
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ẑT

, 1
ẑT
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H is the Fox H function [2] given by,
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Equation 2 does not provide a scalable objective func-
tion suitable for training deep neural networks. Hence, we
propose an approximation that is easily scalable for deep-
learning models given by,

p(zv = zu) =

∫∫
GV(zv)GT (zu)δ(zv − zu)dzvdzu

≈
∫

1

2
(GV(z)δ(z− zT ) + GT (z)δ(z− zV)) dz (4)

To understand the above approximation, we refer to Fig-
ure 1. We notice that the integral in Equation 1 tries to con-
volve the two distribution, with an additional constraint of

Figure 1: Visualizing the approximation in Equation 4.

those distributions being equal in value. While convolving
the two generalized gaussian distributions is hard, Figure 1
shows that a rough approximation for the same is to con-
volve a generalized gaussian distribution with the Dirac-
delta distribution. Further, instead of using the estimated
means from ProbVLM in the Dirac-delta distribution (that
are to be near-perfect reconstructions of the embeddings ob-
tained from the frozen network), we use the embeddings
from the frozen encoders as shown in Figure 1. This fi-
nally leads to Equation 4. The first term in the integral,∫
GV(z)δ(z − zT )dz, is the likelihood of the text embed-

ding zT under the predicted distribution, GV(z), for the vi-
sual embedding. Similarly, the second term is the likelihood
of the visual embedding zV under the predicted distribution,
GT (z), for the text embedding. Negative log of Equation 4
leads to a scalable objective function that can be used to
learn the optimal parameters for vision and text components
of ProbVLM (ΨV(·; ζV) and ΨT (·; ζT )),
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In practice, the exponential of β in the above equation
often makes training unstable. To make it more stable, we



Datasets
CUB Flowers Flickr COCO

M R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

V-B32

i2t
35.3 64.9 79.3 54.5 84.7 94.0 79.0 94.7 97.1 50.6 75.0 83.6

85.1 89.4 81.9 53.3 55.2 37.2 64.2 61.0 55.1 61.0 62.3 57.2

92.1 95.0 90.1 69.6 70.6 52.3 77.0 73.6 68.8 75.8 76.5 73.3

t2i
16.0 34.4 44.6 25.5 47.8 61.8 56.5 82.2 88.3 30.1 55.7 66.8

63.9 63.0 60.5 37.3 33.5 31.7 36.2 35.5 35.1 35.9 36.9 35.4

72.8 71.8 70.7 47.4 43.3 43.7 47.5 46.9 46.7 47.2 49.3 47.8

V-B16

i2t
34.2 66.2 80.4 52.1 82.8 91.6 82.7 96.2 98.9 53.0 77.1 85.1

85.1 89.4 81.9 53.3 55.2 37.2 64.2 61.0 55.1 61.0 62.3 57.2

92.1 95.0 90.1 69.6 70.6 52.3 77.0 73.6 68.8 75.8 76.5 73.3

t2i
15.0 33.3 44.1 25.4 46.4 57.9 61.0 84.2 89.6 33.3 58.6 68.9

63.9 63.0 60.5 37.3 33.5 31.7 36.2 35.5 35.1 35.9 36.9 35.4

72.8 71.8 70.7 47.4 43.3 43.7 47.5 46.9 46.7 47.2 49.3 47.8

RN-50

i2t
31.1 61.7 75.9 53.0 87.1 95.0 77.7 95.2 97.3 49.1 72.5 81.8

85.1 89.4 81.9 53.3 55.2 37.2 64.2 61.0 55.1 61.0 62.3 57.2

92.1 95.0 90.1 69.6 70.6 52.3 77.0 73.6 68.8 75.8 76.5 73.3

t2i
15.3 35.0 46.5 31.5 54.3 66.7 55.1 81.2 87.9 28.3 53.1 64.3

63.9 63.0 60.5 37.3 33.5 31.7 36.2 35.5 35.1 35.9 36.9 35.4

72.8 71.8 70.7 47.4 43.3 43.7 47.5 46.9 46.7 47.2 49.3 47.8

Table 1: Zero-shot performance on COCO, Flickr, CUB and
FLO with for both Image-to-Text (i2t) and Text-to-Image
(t2i) Retrieval for CLIP Models (M) with Vision Trans-
former (V-B32, V-B16) and ResNet (RN-50) backbones.

CLIP backbones fine-tuned on

CUB Flowers Flickr COCO

D V-B32 V-B16 RN-50 V-B32 V-B16 RN-50 V-B32 V-B16 RN-50 V-B32 V-B16 RN-50

C
U

B

i2t 58.8 66.1 53.9 25.2 23.8 13.4 32.4 31.1 26.2 31.5 32.5 26.8

t2i 41.3 42.3 37.4 18.4 16.8 13.1 16.6 17.1 16.1 16.6 16.9 14.3

Fl
ow

er
s i2t 54.5 51.1 44.3 80.7 82.0 73.8 49.5 55.2 49.7 47.9 47.2 43.6

t2i 25.5 31.2 29.6 57.8 59.0 53.3 31.3 29.3 30.8 28.7 29.2 31.7

Fl
ic

kr

i2t 68.9 73.5 48.2 51.4 62.4 24.4 90.0 92.7 87.1 86.7 90.2 87.7

t2i 48.6 54.7 31.4 32.3 40.5 17.0 73.4 77.5 68.3 69.9 74.5 68.7

C
O

C
O i2t 32.6 42.6 22.0 24.8 31.8 8.9 56.9 61.5 52.0 73.4 69.5 64.3

t2i 19.5 27.1 12.5 32.3 19.7 6.8 38.7 43.9 33.0 49.8 52.3 45.3

Table 2: Result for fine-tuning CLIP on different Datasets
(D) for Image-to-Text (i2t) and Text-to-Image (t2i) retrieval.

make use of the Taylor-series expansion and note that(
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This way, the variable β̂ no longer in exponent and as a
result loss becomes more stable during optimization.

B. Additional Quantitative Experiments
We provide the zero-shot results for the CLIP model

trained with different visual backbones in Table 1, while

Figure 2: tSNE plot for MS-COCO and CUB image em-
beddings illustrating the diversity of MS-COCO.

the results after fine-tuning are presented in Table 2.
While Zero-Shot CLIP achieves promising results on all 4
datasets, these are much worse when compared to the re-
sults obtained when fine-tuning on the desired target dataset
(42.3 vs. 15.0 for a ViT B/16 on CUB t2i R@1). How-
ever, this comes at the cost of worse performance on the
remaining datasets due to catastrophic forgetting and has to
be mitigated via several strategies.

Figure 2 shows the tSNE plots for the CLIP embeddings
obtained from a relatively diverse dataset (e.g., COCO)
compared to a niche dataset (e.g., CUB consisting of only
birds). As indicated in the plot, a niche dataset will likely
not be able to capture all the representations spread in the
embedding space, leading to poor generalization, as shown
in Table 2. This is because CUB has images that only con-
tain birds, whereas COCO is a much larger datasets contain-
ing 80 different object categories (including birds). There-
fore fine-tuning either the VLM or ProbVLM on a larger,
more diverse dataset such as COCO would lead to better
generalization, and trasnferrability across datasets.

C. Implementation Details and Code

Stable Diffusion interpretation. The U-Net based decoder
used by Stable Diffusion takes the pre-final layer of the
CLIP text encoder as input, which expects the input to be
in a shape tokens x features However, the usual training of
ProbVLM takes the pooled output from the text encoder
to enable cross-modal alignment with the vision encoder.
For this experiment, we re-train ProbVLM to operate on
the pre-final layer without the cross-modal alignment.
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