ProbVLM: Probabilistic Adapter for Frozen Vison-Language Models

A. Additional Theoretical Support

We discuss Equation 4 from the main paper and how
we simplify the same to obtain a loss function suitable for
training deep learning models. Given an image and text
embedding pair (zy,z7) (from frozen model) represent-
ing similar concepts, the output distributions from ¥ (-; ¢),
G(z; 2y, Gy, By) and G(z; 27, ér, B7) (later referred to
as Gy(z)) and Gr(z)) should match. This can be mea-
sured directly from the likelihood as, p(z, = z,), where
Z, ~ Gy(z) and z,, ~ Gy (z) asin[1],ie.,

p(zy = 24,) ::/ Gv(24)G7(24)0(2y — Zy)d2z,dz, (1)

where §(-) refers to the Dirac-delta distribution. The above
integral can be simplified further by defining Az = z, —
z,, and seeking p(Az) = 0. As both z, and z, are GGD
random variables, Az follows the distribution based on the
Bivariate Fox H-function [2] given by,
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Equation 2 does not provide a scalable objective func-
tion suitable for training deep neural networks. Hence, we
propose an approximation that is easily scalable for deep-
learning models given by,

P(zy = 2y) = / Gy (24)G7(20)0 (20 — 24)d2ydZy,

~ / % (Gv(2)d(z — z7) + Gr(2)0(z —2y))dz  (4)

To understand the above approximation, we refer to Fig-
ure 1. We notice that the integral in Equation 1 tries to con-
volve the two distribution, with an additional constraint of
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Figure 1: Visualizing the approximation in Equation 4.

those distributions being equal in value. While convolving
the two generalized gaussian distributions is hard, Figure 1
shows that a rough approximation for the same is to con-
volve a generalized gaussian distribution with the Dirac-
delta distribution. Further, instead of using the estimated
means from ProbVLM in the Dirac-delta distribution (that
are to be near-perfect reconstructions of the embeddings ob-
tained from the frozen network), we use the embeddings
from the frozen encoders as shown in Figure 1. This fi-
nally leads to Equation 4. The first term in the integral,
[ Gv(2)d(z — z7)dz, is the likelihood of the text embed-
ding z7 under the predicted distribution, Gy (z), for the vi-
sual embedding. Similarly, the second term is the likelihood
of the visual embedding zy, under the predicted distribution,
G7(z), for the text embedding. Negative log of Equation 4
leads to a scalable objective function that can be used to
learn the optimal parameters for vision and text components
of ProbVLM (¥y(+;¢y) and W7 (-5 (7)),
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In practice, the exponential of S in the above equation
often makes training unstable. To make it more stable, we



Datasets
CUB Flowers Flickr Ccoco

M R@l R@5 R@10 R@l R@5 R@10 R@1 R@5 R@I0 R@1 R@5 R@I0

353 649 793 545 847 940 79.0 947 97.1 506 750 83.6
i2t 851 894 819 533 552 372 642 610 551 610 623 572
921 950 90.1 69.6 706 523 77.0 73.6 688 758 765 733
160 344 446 255 478 61.8 565 822 883 30.1 557 66.8
t2i 639 630 605 373 335 317 362 355 351 359 369 354
728 718 70.7 474 433 437 475 469 467 472 493 478

V-B32

342 662 804 521 828 91.6 827 962 989 530 77.1 851
i2t 851 894 819 533 552 372 642 610 551 610 623 572
921 950 90.1 69.6 706 523 77.0 73.6 688 758 765 733
150 333 441 254 464 579 610 842 896 333 586 689
t2i 639 630 605 373 335 317 362 355 351 359 369 354
728 718 70.7 474 433 437 475 469 467 472 493 478

V-B16

31.1 617 759 53.0 87.1 950 777 952 973 49.1 725 818
i2t 851 894 819 533 552 372 642 610 551 610 623 572
921 950 90.1 69.6 706 523 77.0 73.6 688 758 765 733
153 350 465 315 543 667 551 812 879 283 531 643
t2i 639 630 605 373 335 317 362 355 351 359 369 354
728 718 70.7 474 433 437 475 469 467 472 493 478

RN-50

Table 1: Zero-shot performance on COCO, Flickr, CUB and
FLO with for both Image-to-Text (i2t) and Text-to-Image
(t21) Retrieval for CLIP Models (M) with Vision Trans-
former (V-B32, V-B16) and ResNet (RN-50) backbones.

CLIP backbones fine-tuned on

CuB Flowers Flickr Ccoco

D V-B32 V-B16 RN-50 V-B32 V-B16 RN-50 V-B32 V-B16 RN-50 V-B32 V-B16 RN-50

2t 588 661 539 252 238 134 324 311 262 315 325 268

CUB

2i 413 423 374 184 168 131 166 171 161 166 169 143

L2t 545 511 443 807 820 738 495 552 497 479 472 436
3

S .

=20 255 312 296 578 590 533 313 293 308 287 292 317

2t 689 735 482 514 624 244 900 927 871 867 902 877

Flickr

2i 486 547 314 323 405 170 734 715 683 699 745 687

2t 306 426 220 248 318 89 569 615 520 734 69.5 643

coco

2i 195 271 125 323 197 68 387 439 330 498 523 453

Table 2: Result for fine-tuning CLIP on different Datasets
(D) for Image-to-Text (i2t) and Text-to-Image (t2i) retrieval.

make use of the Taylor-series expansion and note that

soalz—=
~1-08+p (g) (6)
[0
This way, the variable B no longer in exponent and as a
result loss becomes more stable during optimization.

B. Additional Quantitative Experiments

We provide the zero-shot results for the CLIP model
trained with different visual backbones in Table 1, while
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Figure 2: tSNE plot for MS-COCO and CUB image em-
beddings illustrating the diversity of MS-COCO.

the results after fine-tuning are presented in Table 2.
While Zero-Shot CLIP achieves promising results on all 4
datasets, these are much worse when compared to the re-
sults obtained when fine-tuning on the desired target dataset
(42.3 vs. 15.0 for a ViT B/16 on CUB t2i R@1). How-
ever, this comes at the cost of worse performance on the
remaining datasets due to catastrophic forgetting and has to
be mitigated via several strategies.

Figure 2 shows the tSNE plots for the CLIP embeddings
obtained from a relatively diverse dataset (e.g., COCO)
compared to a niche dataset (e.g., CUB consisting of only
birds). As indicated in the plot, a niche dataset will likely
not be able to capture all the representations spread in the
embedding space, leading to poor generalization, as shown
in Table 2. This is because CUB has images that only con-
tain birds, whereas COCO is a much larger datasets contain-
ing 80 different object categories (including birds). There-
fore fine-tuning either the VLM or ProbVLM on a larger,
more diverse dataset such as COCO would lead to better
generalization, and trasnferrability across datasets.

C. Implementation Details and Code

Stable Diffusion interpretation. The U-Net based decoder
used by Stable Diffusion takes the pre-final layer of the
CLIP text encoder as input, which expects the input to be
in a shape tokens x features However, the usual training of
ProbVLM takes the pooled output from the text encoder
to enable cross-modal alignment with the vision encoder.
For this experiment, we re-train ProbVLM to operate on
the pre-final layer without the cross-modal alignment.
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