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The supplementary material is organized as follows:

Section 1 provides the convergence of theory; Section 2
studies the effect of the amount of data that each client owns
on its benefit from CL; in Section 3 additional experiments
are provided to evaluate the effect of pacing function and
its parameters in IID and non-IID FL; Section 4 presents an
ablation study on the effect of the level of data heterogene-
ity; Section 5 studies the correlation between the ordering
based learning and the level of statistical data heterogene-
ity on CIFAR-100 and finally, Section 6 presents the related
work to this paper; and finally, Section 7 contains imple-
mentation details.

1. Convergence Theory

1.1. Proofs of the Main Theorems - Strongly Convex

Problems

Lemma 1 The stochastic gradient second moment satis-

fies:
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where in the last line we used rf(✓⇤) = 0 and L-
smoothness.
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Note that Assumption 1, in particular (4) and (4) imply that
E[g(t,j)k ] = ḡ

(t,j).
The next Lemma is similar to [44, Lemma 5] with a sim-

pler proof of simple adding the terms across agents up using
the previous result.
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The next Lemma is similar to [44, Lemma 6] which in turn
follows [45, Lemma 2.1]. Consider the sequence,
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and note that by this construction x̂
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(t+1,0). The
proof is a straightforward application of strong convexity.
It holds that,
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Finally we obtain our first derivation of expected conver-
gence below.

Lemma 4 Let L̄ := (L + (3 + 2M)2L/Q) and assume
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Proof. Using the previous set of results,
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Next, from Lemma 1 we can conclude that
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Next we derive a recursion on the average parameter devia-
tion.

Lemma 5 Let µ > 0. The average iterate deviation satis-

fies the bound,
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Proof. Indeed, compute directly,
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For the second term in the above expression we can ap-
ply (5). For the third, we note that,
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where we used strong convexity in the inequality. Apply-
ing Young’s inequality to obtain B
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Now we want to use the previous Lemma in order to bound

the contribution of the average iterate discrepancy to the

overall descent appearing in Lemma 4. Taking a sum for
a given t, for j = 1, ..., J , we can see that
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With that, we proceed with the main result:

Proof. of Theorem 1 From Lemma 4 and (6)
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Noting that the assumption on the Theorem implies that the
term involving the objective value difference is negative, we
obtain the statement of the main result.

1.2. Nonconvex Objectives

Proof. of Theorem 2 As standard, we begin by applying
the Descent Lemma across subsequent averaging steps.
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Now, we consider the discrepancy of g(t,j)k to rf(✓(t,0)) to
obtain a perturbation from the decrease we expect to get,
that we wish to eventually bound relative to said decrease.
Specifically, taking total expectations (and implicitly using
the tower property):
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and so, combining the previous two sets of equations,
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from which we obtain the final result.

1.3. Convergence Rate Advantages of Curriculum

Learning for Centralized Learning

Consider a standard loss function of the least squares
form,
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Compute the generic form of the Hessian,
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Note that the Fisher information matrix, or Gauss-
Newton term r✓f(✓, xi)r✓f(✓, xi)T is expected to be pos-
itive definite and independent of each samples loss value,
however, the greater the magnitude of the overall loss
(f(✓, xi)�yi) the greater the potential influence of the Hes-
sian of the neural network model r2

✓✓f(✓, xi) on the overall
Hessian of the objective function. Thus, inherently, cur-
riculum training makes the initial objective function more
convex than otherwise. This has the clear consequence of
enabling faster optimization trajectories at the beginning of
the training process. This, however, does not explain why
the advantage is more pronounced in the case of non-iid
data, which is the most striking finding in our experiments.

1.4. Notes of Convergence Insights from Alternative

Formulations

In this section, we give a review of the literature on Fed-
erated Averaging and the associated convergence guaran-
tees, presenting an analysis of how we expect these to be

modified by the introduction of curriculum learning. As
such we round out our theoretical understanding of the pro-
cedure.

The score of the data samples is based on the server’s
parameter vector ✓g . Naturally, this approach creates a sig-
nificant association between the degree of statistical dissim-
ilarity of the data at each client with the training difficulty
score used to rank data samples for curriculum learning. So
we can safely purport that CL, for non-iid data, results in a
level of dissimilarity that increases with the iteration t.

To understand how this affects the convergence, we re-
view a few standard works and study how increasing hetero-
geneity with the iteration number affects the convergence
guarantees.

To begin with, the state of the art in convergence theory
of Federated Averaging (or Local SGD) for convex objec-
tives is given, to the best of our knowledge, in [44].

Here the main result of interest is [44, Theorem 5], for
which the objective optimality gap is bounded by,
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where the variance � is proportional to the heterogeneity.
It can be seen from the convergence theory that the bound
changes to, with �t iteration dependent,
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suggesting an overall better convergence quality for any
given iteration, since we expect �t < � up until t = T , i.e.,
early iterations generate better accuracy than otherwise.

In regards to nonconvex objectives, which are of course
more faithful to the practice of training neural networks, to
the best of our knowledge the state of the art in theoreti-
cal convergence guarantees for local SGD is given in [39].
There, a notion of gradient similarity is presented,
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and assuming a bound � on this term, � does not appear di-
rectly in the convergence bounds in [39, Theorem 4.2 and
Theorem 4.4] (respectively for the objective satisfying the
PL condition and the general case). However, the number
of local steps, which they denote as E, (i.e. the number
of SGD steps in ClientUpdate in Algorithm 1) depends
on E / 1/�, meaning the greater the dissimilarity and the
fewer local iterations are permitted to ensure convergence,
a net increase in the total number of communications nec-
essary.



Figure 10: There is no correlation between the amount of data on the

client’s end and the benefit they gain from ordered learning. The ac-

curacy decreases when the amount of data each client owns is reduced,

but it gains the same amount of benefit from curriculum learning with

more data. Evaluating the impact of the amount of data each client owns
on the accuracy when the clients employ curriculum, anti-curriculum or
random ordering during their local training on CIFAR-10 with Non-IID
(2) for FedAVg (left), and with Dir(0.05) for Fedprox (right). All curricula
use the linear pacing functions with a = 0.8 and b = 0.2. Each experiment
is repeated three times for a total of 100 communication rounds with ten
local epochs, and the mean and standard deviation for global test accuracy
are reported.

The use of the FedProx objective can also be analyzed
through the lens of iterate-varying dissimilarity. Consider-
ing [46, Theorem 4] we have that with,

⇢t =
1

µ
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and, with St devices chosen at iteration t
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and thus with Curriculum training, we see increasing Bt and
thus decreasing ⇢t, and thus, again, we shall expect to see
initial faster and then gradually slower convergence.

2. Effect of amount of data on clients end

In this section, we are interested in understanding
whether the previous conclusions we made for CIFAR10
generalize to both high and low data regimes on the client’s
end. In particular, we divide the larger dataset into mul-
tiples of the number of clients and randomly assign M of
those data partitions to the M clients. The larger the num-
ber of partitions, the smaller the amount of data on each of
the clients. As can be seen from Fig. 10 the amount of data
that each client owns has no relationship with the benefit
it gains from curriculum learning. In fact, CL ameliorates
the classification accuracy performance equally under both
lower and higher data regimes on the clients’ end.

3. Effect of pacing function and its parameters

in IID and Non-IID FL

This subsection complements subsection 3.2 of the main
paper, where we evaluated the effect of pacing function and
its hyperparameter a when clients train on CIFAR-10 with

FedAvg under IID data. Here, we report the results for Fe-
dAvg under Non-IID Dir(0.05). The conclusion is similar–
Fig. 11 shows that bigger values of a provide better accu-
racy performance for most of the pacing function families
on both extreme IID and Non-IID setting. It is noteworthy
that, the observations generalize to other baselines, as dis-
cussed in different sections of the paper.

Figure 11: Bigger a values provide better accuracy performance for

most of pacing function families and on both IID and Non-IID set-

ting for curriculum learning. But a notable contrast can be seen with

random-/anti ordering. The effect of using different pacing function fam-
ilies and their hyperparameter a on the accuracy when the clients employ
curriculum, anti-curriculum or random ordering during their local training
on CIFAR-10 with Non-IID Dir(0.05) data. The figures from left to right
are for curriculum, random, and anti ones.

4. Ablation study on the effect of level of data

heterogeneity

In this section, we report the ablation studies on the
pathological case of extreme heterogeneity. We have care-
fully examined the results for the specific pathological
where one client has only images of one of the classes (such
as cats) and another has only images of one other class (such
as dogs). In this severe heterogeneous scenario, the results
that reported in Table 3 demonstrate a significant improve-
ment achieved by CL compared to the vanilla approach. CL
led to a remarkable improvement of 43%, and 29% respec-
tively over the “Vanilla" baseline, while is higher than
the Dir (.) Non-IID (less heterogeneous) setup reported in
the main paper of about 16%, and 17% for FedProx and Fe-
dAvg. These findings further reinforce the claim that “the
more heterogeneous the more benefit from CL". Here, we
are referring to the relative improvement over the baseline
(“Vanilla").

Table 3: The benefit of ordered learning under the pathological case of
one client having only images of one of the classes (such as cats) and an-
other having only images of one other class (such as dogs) (very high het-
erogeneity) when clients are trained on CIFAR-10.

Algorithm Curriculum Anti Random Vanilla

FedProx 21.83± 0.36 11.28± 0.82 16.21± 0.17 15.25± 0.81
FedAvg 19.69± 0.46 10.59± 0.10 13.62± 0.38 15.29± 0.79



5. Effect of level of heterogeneity

This subsection complements subsection 3.3 of the main
paper. In this section, we present further experimental
results showing the relationship between ordering-based
learning and the level of statistical data heterogeneity.
Herein, we are interested in investigating whether the previ-
ous conclusions we made for CIFAR-10 generalize to other
datasets such as CIFAR-100. The performance of an "ex-
pert" model with the same network architecture trained in a
standard IID centralized non-federated setting on the dataset
is about 53%. Fig. 12 shows the same trend as in CIFAR-
10, i.e., again, we see that as the data from the clients be-

comes more heterogeneous, the global model benefits more

from curriculum learning, resulting in higher performance

accuracy when compared to "vanilla" and "anti-/random"

learning. We provided rigorous analysis to explain this
phenomenon.

Figure 12: Curriculum-learning helps more when training with more

severe data heterogeneity across clients on CIFAR-100. Test accuracy
of different baselines when sweeping from extremely Non-IID setting, Dir
(0.05) to highly IID setting, Dir(0.9). For each baseline, the average of
final global test accuracy is reported. We run each baseline 3 times for 100
communication rounds with 10 local epochs. The figures from left to right,
are for FedAvg, Fedprox, Scaffold, and FedNova baselines.

6. Related Work

Early CL formulated the easy-to-hard training paradigm
in the context of deep learning [1]. CL determines a se-
quence of training instances, which in essence corresponds
to a list of samples ranked in ascending order of learning
difficulty [2]. Samples are ranked according to per-sample
loss [21]. In the early steps of training, samples with smaller
loss (higher score) are selected, and gradually the subset
size over time is increased to cover all the training data. [22]
proposed to manually sort the samples using human annota-
tors. Self-paced learning (SPL) [2] chooses the curriculum
based on hardness (e.g., per-sample loss) during training.

[20] proposes using a consistency score (c-score) calculated
based on the consistency of a model in correctly predicting
a particular example’s label trained on i.i.d. draws of the
training set. [47] determines the difficulty of learning an
example by the metric of the earliest training iteration, af-
ter which the model predicts the ground truth class for that
example in all subsequent iterations.

7. Implementation Details

We begin by splitting the dataset into K partitions, and
these partitions are distributed among the N clients in the
federation. For most experiments M = 100 and the parti-
tions are constructed with an input Non-IID Dirichlet dis-
tribution with parameter � and using Algorithm 2 with
ford = 0, unless otherwise specified. The merits of the
Algorithm 2 are detailed in Section 4.3.

At the client, we use an SGD optimizer for training with
an exponentially decaying learning ⌘ = ⌘0(1 + ↵ ⇤ i)�b,
with parameters ⌘0 = 0.001, ↵ = 0.001, b = 0.75 and i is
the step index, and a momentum ⇢ = 0.9 and weight decay
of ! = 5⇤10�4. The step count i is a parameter local to the
clients and is reset at the beginning of each federation round
thereby resetting the learning rate back to ⌘0 for each round
of federation. For the ResNet models however, we do not
use the exponential decay learning rate and set b = 0 with
⌘0 = 0.01, and weight decay ! = 0, due to our observation
that these values empirically work well.

A small batch size of bsdata = 10 is used on the server.
At each client, we use the local epochs nepoch = 10, which,
together with the client data partition size, determines the
number of local steps at the clients between two global
model averaging steps of the federation algorithm. The
number of communication rounds of federation is R = 100
and the client participation rate is f = 0.1, unless otherwise
specified. Similarly, when performing client curriculum, we
use a client batch size of bsclient = 10.

Certain federated learning algorithms require additional
algorithm specific parameters; these are chosen to match
the best values reported by the authors in their respective
papers. For reproducibility of the experiments, we seed our
random number generator with a seed of 202207 at the be-
ginning of each experiment. Each experiment consists of 3
trials, and we report the mean and variance of the results.


