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A. Detailed Results Analysis
A.1. Within Model Class Analysis

A.1.1 Encoder vs. Decoder

A key difference between encoder-only and (encoder-)
decoder-based models is the ability to generate answers be-
yond the explicit document textual content. This is clearly
reflected in the results for BigBird, Longformer, BERT, and
LayoutLMv3, which score < 10 ANLS% on abstractive
questions, whereas they have just average scores for extrac-
tive questions. On DUDE, we can claim that a generative
model is necessary given all considered question types.

Quite remarkably, while the human baseline demon-
strates that humans find abstractive questions (ANLS
±82%) easier than extractive questions (ANLS±68%), the
reverse is true for all machine baselines. A potential con-
founder for these results could be the difference in output
formatting for extractive vs. abstractive answers, which is
hard to take into account with ANLS evaluation.

A.1.2 Incorporating Layout & Vision

When comparing T5 with and without 2D position embed-
dings on the diagnostic categories, we find the highest im-
provements on ‘evidence table or list’, ‘complexity simple’,
and ‘evidence plain’.

Our study with the proposed baselines shows that ques-
tions requiring visual evidence to be answered are an impor-
tant future challenge for the vision community. To get fur-
ther insights into models’ performance on these questions,
we calculate a weighted average of ANLS over visual cate-
gories. This reveals that GPT3 (4-shot) and T5-2d-large-8K
obtain a tied score of (ANLS=37%), even though they only
have access to the text. The human performance, on the
other hand, is close to double (ANLS=72%), thus showing
the need for better integration of the visual modality in DU
models.

A.1.3 Toward Long Document Processing

DUDE clearly requires methods that can process long se-
quences, as evidenced by its average document length of
1832±2545 tokens. This is particularly evident when com-
paring standard NLP QA methods like BERT-concat, which
underperforms Longformer [6] and BigBird [103], despite
being the large version. Experiments with T5 and T5-2D
further support this claim, as extending the sequence length
from 512 to 8192 leads to a ∼ 5% ANLS improvement.

The exception is HiVT5 [90], which performs worse
than the rest of the methods. This is due to the authors
of HiVT5 performing a pre-training task of text denoising
that helped to better model the [PAGE] tokens. This re-
sulted in a better, compressed representation of the relevant

information within a document conditioned by a question.
Moreover, the authors also did extensive experimentation
and found that 10 [PAGE] tokens per page were the best
fit for the MP-DocVQA [90] dataset. We used similar hy-
perparameters, but DUDE might require better fine-tuning
of [PAGE] tokens since the images are more visually rich
with colored graphics and layouts. The hierarchical pro-
cessing of documents with a meaningful visual component
is a promising avenue for future research.

A.1.4 Diagnosis of LLM Results

The reasoning for including these LLMs as baselines stems
from our question: “Does advanced text understanding suf-
fice for solving DUDE?". Our results for diagnostic cate-
gories reveal some strengths and weaknesses of LLMs in
the DocVQA task setting.

Strengths GPT3 trumps all other tested models for
list-type questions (ANLS=36-40%), which can be ex-
plained by the extractive nature of these questions. Af-
ter 4-shot fine-tuning, ChatGPT (4-shot) is better than all
other tested baselines in answering not-answerable ques-
tions (ANLS=77.45%). This can partly explain the appeal
of this particular GPT checkpoint in recent times. GPT3 (4-
shot) outperforms (ANLS=52.51%) other tested baselines
on questions from the ‘complexity multi-hop’ category such
as What city name appears the most often in the timetables?.

Weaknesses Compared to another (more simple text-
only generative baseline, T5-base-512 (ANLS=47%),
LLMs perform two times worse on abstractive questions
(ANLS=22%). Closer analysis reveals that LLMs (even
after 4-shot fine-tuning) predict abstractive questions to be
Not-answerable in 55% of cases (in reality: 10%). Opera-
tions such as arithmetic, counting, and comparisons remain
generally elusive skills (<25%ANLS).

Both LLMs we tested scored significantly lower than the
human baseline in questions that require visual understand-
ing, with an average ANLS score of 21%. This is under-
standable because these are text-only models.

While LLMs’ zero-shot performance is relatively high,
we note that DUDE consists of public-license documents
from the web, which potentially might have been included
in the LLMs’ pre-training corpus.

A.2. Assessing Confidence

ECE measures calibration of confidence, whereas
AURC assesses both performance and confidence ranking
[34] (more detail Appendix B.4). The latter results in an
appropriate metric to select the best model in real-world
applications, where wrong predictions can yield undesired
scenarios, which could be prevented by manually revising
low-confidence answers.

Interestingly, T5-base-512 scores better on calibration



Model ANLS ECE AURC

BertQA MPDocVQA Concat 29.8 13.83 43.28
BertQA MPDocVQA MaxConf 32.18 28.93 48.73

BigBird MPDocVQA Concat 30.67 25.07 47.2
BigBird MPDocVQA MaxConf 29.38 50.79 56.81

LayoutLMv3 MPDocVQA Concat 22.61 13.19 57.11
LayoutLMv3 MPDocVQA MaxConf 25.27 31.31 58.54

Longformer MPDocVQA Concat 33.45 22.21 45.83
Longformer MPDocVQA MaxConf 28.67 48.6 58.11

T5 MPDocVQA Concat 34.37 18.97 47.31
T5 MPDocVQA MaxConf 37.56 23.73 46.69

T5-base Concat-0 25.62 20.05 62.25
T5-base MaxConf-0 22.21 39.47 58.89

Table 4: Comparison of baselines using Concat or Max
Conf strategies.

(ECE=10.82) than T5-2D-large-8K, the baseline with the
highest ANLS, yet worse calibration (ECE=14.4). In gen-
eral, it seems calibration worsens when extending the maxi-
mum sequence length, whereas adding 2D position embed-
dings only positively affects ANLS. From the baselines
tested, T5-2D-large-8K achieves the highest AURC.

Another interesting result comes from analyzing the cal-
ibration of models evaluated using the Concat strategy vs.
Max Conf. strategy. In the main paper, we reported results
for the model with the relative best ANLS. Thanks to our
varied set of evaluation metrics, we discover that Max Conf.
overall results in poor calibration (see Table 4), whereas
considering ANLS, there is not always a clear winning
strategy. This shows that predicting each page separately
and necessarily assuming conditional independence across
pages is not a reliable strategy for multipage DocVQA.

B. Baseline Experiments Setup
In this Section, we describe the implementation details6

for the architectures and inference methods used in our
benchmark.

B.1. Hyperparameter Defaults

Refer to Table 5.

B.2. Generative LLM Prompt Fine-tuning

The performance of GPT3.5 models was assessed in two
settings: 0-shot and 4-shot. In the 0-shot setting, the prompt
included instructions similar to those provided to annotators
to teach them how to annotate. In the 4-shot setting, the
prompt was enhanced with the content of a single document
from the training set along with four questions of different

6Main framework used: https://github.com/rubenpt91/
MP-DocVQA-Framework

Hyper-Parameter T5 T5+2D HiVT5

Epochs 10 10 10
Warm-up
(iterations)

1000 250 1000

Optimizer Adam, AdamW Adafactor Adam
Gradient acc. False 8 False
Lower case True True True
Max. Seq. Length 512, 8192 512, 8192 20480
Generation
(Max. Tokens)

100 100 50

Batch size 3 8 1
Learning rate 1E-04, 2E-04 2E-04 2E-04
Training time
(per epoch)

1h, 10h 1.5h, 5h 10h

GPU Hardware
TITAN RTX,

A100
A100

(80GB)
TITAN RTX

(24GB)

Table 5: Hyperparameters used for fine-tuning T5, T5-2D
and HiVT5 on DUDE. When two values are placed in a
single column, they refer to the model’s versions with 512
and 8192 input sequence length, respectively.

types (extractive, abstractive, list, and not answerable) to
better gauge the models’ abilities.

Few-shot Prompts

Document:
<content of single training set document>
–
Question: <extractive question>
Answer: <extractive answer>
–
Question: <abstractive question>
Answer: <abstractive answer>
–
Question: <list question>
Answer: <list item> | <list item>
–
Question: <not-answerable question>
Answer: none
–
Document:
<content of evaluated document>
–
Questions and answers pairs to above document:
Answers contains either:
- a span inside of document
- a list of spans inside of document (each span should be sepa-
rated by "|")
- not exist explicitly as span of document (the answer should be
freely generated text)
- question couldn’t be answered (the answer should be "none")
Question: <question>
Answer: ______

The 0-shot prompt is analogous to the 4-shot prompt, but
the key distinction is that it lacks the first document and the
example question-and-answer pairs.



For the inference process, we utilized the prompt com-
pletion default settings outlined in the OpenAI documenta-
tion, with the exception of the temperature parameter, which
was lowered to a value of 0.0. This adjustment was made to
ensure that the output would be more deterministic and fo-
cused, with less emphasis on generating creative variations.

Only after our prompting experiments had been com-
pleted, we realized the opportunity to assess confidence es-
timation using chained prompts (Please give a confidence
between 0 and 1 about how certain you are this is the an-
swer.) as in [40]. Since we did not save our dialogue states
and considered the expenses, we leave this for future work.

B.3. Confidence Estimation

This Subsection details confidence scoring functions for
the baselines, as this is not reported in standard practice.

We define confidence as the predicted probability of the
top-1 prediction, often arising as the largest value from soft-
max normalization of logits from a final model layer (head).

Encoder-based models will output logits for all possible
start and end positions of the answer within the provided
context. While the predicted answer of such a span pre-
diction architecture will come from the highest valid (no
negative span) combination of the sum of a start and end
logit, the predicted answer confidence can be obtained by
the following procedure (BS: batch size and S: sequence
length):

# Standard span prediction forward call
outputs = model(**inputs,

start_positions=start_positions,
end_positions=end_positions)

↪→

↪→

# Assumes masking all padding and special tokens
after softmax with 0↪→

start = outputs.start_logits.softmax(dim=1)
.unsqueeze(dim=0).unsqueeze(dim=-1) #1 x BS x S x

1↪→

end = outputs.end_logits.softmax(dim=1)
.unsqueeze(dim=0).unsqueeze(dim=1) #1 x BS x 1 x

S↪→

# Compute the probability of each valid (end <
start) start, end pair↪→

candidate_matrix = torch.matmul(start,
end).triu().detach().numpy() # 1 x BS x S x S↪→

# Obtain highest scoring candidate span by
multi-index argmax↪→

flat_probs = candidate_matrix.reshape((1, -1)) #
BS x S*S↪→

batch_idx, start_idx, end_idx =
np.unravel_index(np.argmax(flat_probs, 1),
candidate_matrix.shape)[1:]

↪→

↪→

batch_answer_confs = candidate_matrix[0,
batch_idx, start_idx, end_idx]↪→

Decoder-based models are not restricted to spans and
can output an arbitrary, though often controllable, amount
of text tokens, indicated as S′. The logits at the final layer

take the shape of BS × S′ × V , where V is the tokenizer’s
vocabulary size (32.1K for T5-base). The following confi-
dence estimation procedure is applied for decoder outputs:

# Standard decoder-based greedy forward pass
(without labels)↪→

outputs = model.generate(**input_ids,
output_scores=True,
return_dict_in_generate=True)

↪→

↪→

# BS x S' x V, dropping EOS token and applying
softmax + argmax per token↪→

batch_logits = torch.stack(outputs.scores,
dim=1)[:, :-1, :]↪→

decoder_outputs_confs =
torch.amax(batch_logits.softmax(-1), 2)↪→

# Remove padding from batching decoder output of
variable sizes↪→

decoder_outputs_confs_masked = torch.where(
outputs.sequences[:, 1:-1] > 0,
decoder_outputs_confs,
torch.ones_like(decoder_outputs_confs))

# Multiply probability over tokens
batch_answer_confs =

decoder_outputs_confs_masked.prod(1)↪→

B.4. Evaluation metrics

All metric implementations (ANLS, ECE, AURC) are
made available as a standalone repository. Additionally, we
provide an online service where researchers can evaluate
their methods against a blind (questions-only) test dataset.
Below, we expound on the implementation details of the
metrics and motivate design choices.

B.4.1 ANLS

Average Normalized Levenshtein Similarity (ANLS) is a
metric introduced in [8], which was then extended [89] to
support lists and be invariant to the order of provided an-
swers. We adapt the underlying Levenshtein Distance met-
ric [45] to support not-answerable questions, NA(G) =
I[type(G) = not-answerable ] (see Equation (1)).

Consider for simplicity, the evaluation of a single non-
list ground truth answer G and prediction P̂ , each with
string lengths |G| and |P̂ |, respectively.

LD(G, P̂ ) =



1 if NA(G) ∧ |P̂ | > 0,

0 if NA(G) ∧ |P̂ | = 0,

|G| if |P̂ | = 0,

LD(tail(G), tail(P̂ )) if G[0] = P̂ [0],

1 + min


LD(tail(G), P̂ )

LD(G, tail(P̂ )) , otherwise
LD(tail(G), tail(P̂ ))

(1)



The normalized similarity metric is then defined as

NLS(G, P̂ ) =
1− LD(G, P̂ )

max(1, |G|, |P̂ |)
.

Given multiple ground truth answer variants G =
{g1, g2, ...} and a predicted answer for P̂Qi

for each ques-
tion Q in the test set of size N , we define the complete
metric as follows:

ANLS =
1

N

N∑
i=0

(
max
g∈Gi

s
(
g, P̂Qi

))
(2)

s
(
g, P̂Qi

)
=

 NLS
(
g, P̂Qi

)
if NLS

(
g, P̂Qi

)
⩾ τ

0 if NLS
(
g, P̂Qi

)
< τ

,

(3)

where we follow prior literature [8, 89] in setting the thresh-
old τ = 0.5.

In the case of a list-type question, Hungarian matching is
performed following [89] according to NLS between each
ground truth answer part and each prediction answer part.

While ANLS can account for shortcomings of OCR and
formatting issues, evaluation of generated text is notori-
ously complex [74] and requires more research.

B.4.2 ECE

Expected Calibration Error (ECE) is a default metric to
evaluate top-1 prediction miscalibration. It measures the Lp

norm difference between a model’s posterior and the true
likelihood of being correct, as formally defined below:

ECEp(f)
p = E(X,Y )

[
∥E[Y = ŷ | f(X) = p̂]− f(X)∥pp

]
,

where ŷ = argmaxy′ [f(X)]′y is a class prediction with as-
sociated posterior probability p̂ = maxy′ [f(X)]′y .

In our setting, the exact accuracy condition I[Y = ŷ] is
replaced by I[ANLS(y, ŷ) > τ ]. Prior work [62] already
introduced the strategy of thresholding continuous quality
scores (in the case of IOU larger than τ ) in order to be able
to estimate ECE.

In practice, ECE is implemented as a histogram binning
estimator that discretizes predicted probabilities into ranges
of possible values (bins) for which conditional expectation
can be estimated. In order to minimize the drawbacks inher-
ited from histogram binning, as suggested by the literature
[66, 94, 41, 79], we apply an equal-mass binning scheme
with 100 bins (close to

√
N ).

B.4.3 AURC

Area-Under-Risk-Coverage-Curve (AURC) [24, 34] mea-
sures the possible trade-offs between coverage (proportion

of test set%) and risk (error % under given coverage). It as-
sumes predictions to come with a confidence estimate. The
curve can be obtained by sorting all confidence estimates
and evaluating risk from high to low, together with their re-
spective correctness (typically based on exact match).

Similar to ECE as defined above, we apply ANLS
thresholding instead. Formulated this way, the best possible
AURC is constrained by the model’s test error (1-ANLS)
and the number of test instances. We have extended the
very detailed implementation of [34], to which we refer for
further information. On a final note, AURC might be more
sensible for evaluating highly-accurate settings (e.g., 90%
accuracy), where risk can be better controlled (as it is typi-
cally a business decision to decide tolerance to mistakes).

C. Qualitative Examples

As is customary, we provide some interesting, hand-
picked test set examples with predictions from some of the
baselines in our study.
Low complexity. Where the document has been printed?

Simple, extractive question, plain-text evidence.

Source Answer ANLS Conf.

Ground truth New Delhi, India
Human India 0.0 —

T5 IS : 9304 - 1979 0.0 0.56
ChatGPT The document does

not mention where it
has been printed.

0.0 —

GPT3 Bela Pack n Print.
New Delhi, India

0.0 —

T5-2D New Delhi, India 1.0 0.09
HiVT5 Page 1 0.0 0.18
Longformer new delhi, india 1.0 0.72



High complexity. Is there any redacted section on the
document? Abstractive question that requires knowledge

about possible document elements.

Source Answer ANLS Conf.

Ground truth No
Human No 1.0 —

T5 yes 0.0 0.17
ChatGPT [Not-answerable] 0.0 —
GPT3 [Not-answerable] 0.0 —
T5-2D No 1.0 0.43
HiVT5 Yes 0.0 0.55
LayoutLMv3 approved for release 0.0 0.01

Requires arithmetic. What is the difference between
how much Operator II and Operator III makes per hour?
The question requires table comprehension, determining
relevant values, dividing extracted integers, and correcting
the subject-verb agreement.

Source Answer ANLS Conf.

Ground truth $5
Human $5 1.0 —

T5 200 0.0 0.28
ChatGPT $5 per hour. 0.0 —
GPT3 Operator II ($17/hr) |

Operator III ($22/hr)
0.0 —

T5-2D [Not-answerable] 0.0 0.31
HiVT5 [Not-answerable] 0.0 0.15

Visual evidence (chart). What is the maximum percent-
age of the blue graph line on page 8? A highly demanding

question that requires simultaneous competency of visual
comprehension (locating chart and line color), navigating
through layout (determining adequate page), and numerical
comparison (deciding on the highest value).

Source Answer ANLS Conf.

Ground truth 75%
Human 75 0.7 —

T5 76 0.0 0.25
ChatGPT [Not-answerable] 0.0 —
GPT3 76% 0.7 —
T5-2D 32.0 0.0 0.00
HiVT5 45% 0.7 0.05
BigBird 32 0.0 0.47
LayoutLMv3 80% 0.0 0.15



Visual evidence (handwriting). What is the handwritten
date on page 1? The question requires visual comprehen-
sion (recognition of handwriting) and layout navigation (de-
termining the adequate page).

Source Answer ANLS Conf.

Ground truth 13-XII-50
Human 13-XII-50 1.0 —

T5 1977-01-01 0.0 0.24
ChatGPT [Not-answerable] 0.0 —
GPT3 15 December 1950 0.0 —
T5-2D 1950-12-15 0.0 0.24
HiVT5 1977-07-01 0.0 0.11
BERTQA 2006 / 1 0.0 0.5

Requires counting. How many pages have a signature?
The question requires visual comprehension (recognition of
signature), knowledge about layout, and counting.

Source Answer ANLS Conf.

Ground truth 2
Human 2 1.0 —

T5 1 0.0 0.01
ChatGPT 4 0.0 —
GPT3 [Not-answerable] 0.0 —
T5-2D 4 0.0 0.69
HiVT5 4 0.0 0.41

Visual evidence (map), multi-hop. Which states don’t
have any marijuana laws? The multi-hop question requires

visually comprehending the map and linking knowledge
from its legend with depicted regions.

Source Answer ANLS Conf.

Ground truth ID | SD | KS
Human ID | SD | KS 1.0 —

T5 WA ME MT ND MN
OR VT ID NH SD WI
NY MA MI

0.0 0.28

ChatGPT [Not-answerable] 0.0 —-
GPT3 American Samoa 0.0 —-
T5-2D i 0.0 0.03
HiVT5 - 0.0 0.02



D. Additional Dataset Statistics
D.1. Answer Types

Figure 6 shows that there are barely any correlations be-
tween question type and answer type, except for the most
expected ones (e.g. ‘None’ answers and ‘Not answerable’
questions), by means of Cramer’s V coefficient. For in-
stance, date and duration types of answers are equally likely
for both extractive and abstractive questions.

Figure 7 shows the answer type distribution per question
type in DUDE, followed by a comparison to answer type
distributions in related DocVQA datasets (Figure 8).

Figure 6: Answer types correlation heatmap. Results ob-
tained with Cramer’s V coefficient. Note that values on the
scale are below 0.1, suggesting a lack of correlation.

D.2. Dataset Diversity

Similar to the text-based comparison, Figure 9 visualizes
the diversity of the visual embeddings of all documents’
first pages in DUDE, relative to those from other DocVQA
datasets.

Figure 7: Answer type distribution per question type in
DUDE.

Figure 8: Answer type distribution per dataset, sorted in de-
scending order of total answer type occurrences. We have
found: 13 answer types in TAT-DQA; 20 answer types in
InfographicsVQA and SP-DocVQA, 23 answer types in Vi-
sualMRC, and 24 answer types in DUDE



TSNE Projection of 5641 Documents

DocVQA
InfographicsVQA
Ours
TAT-DQA
VQA-CD
VisualMRC

Figure 9: Visualization of document image similarities between samples from different datasets (t-SNE over ResNet101
features of 1k documents, first pages only).


