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A. Extended Related Work
In this section, we provide an extended analysis of related work. Our work builds on several directions explored in prior
studies.

One-to-One Vision-Language Models: Early works in computer vision performed image representation learning by training
on large labeled datasets, where annotations were primarily obtained from crowdworkers [18, 27]. However, the recent
development of contrastive self-supervised methods have greatly reduced the need for large-scale, annotated datasets. Driven
by methods like SimCLR and MoCo, contrastive self-supervised methods learn representations by pulling similar images
together and pushing dissimilar images apart in the latent space [5, 17]. Recent works (e.g. CLIP, ALIGN, BASIC, ConVirt)
extended these approaches to multimodal datasets, where each image is pulled towards an associated caption and pushed
away from dissimilar captions in the latent space [36, 24, 35, 49, 13]. When trained over large-scale datasets consisting of
millions of image-text pairs collected from the web, these vision-language models (VLMs) were shown to be highly effective
across a variety of classification, retrieval, and robustness tasks [10, 11, 36, 24, 35]. We refer to this class of VLMs as
one-to-one models, since a single embedding of the entire image is aligned with a single embedding of the textual caption.

Fine-Grained Representation Learning: Models that possess knowledge of fine-grained region-level information have
been shown in prior work to exhibit a number of advantages. For example, given the image of the cow shown in Figure 1, a



model that can effectively capture region-level details would learn the features (e.g. cow, trees, clouds, etc.) appearing in each
bounding box. Computer vision models that can understand details at the region-level are particularly useful for fine-grained
reasoning tasks, such as region-level retrieval and object detection [19, 50, 37, 31]. Additionally, [39] demonstrated that
medical image models provided with pathology bounding boxes during training are more resistant to spurious correlations,
suggesting that knowledge of region-level information can also improve model robustness. These works demonstrate the
importance of developing models that can capture region-level details.

However, recent studies have demonstrated that standard one-to-one VLMs often struggle to capture fine-grained region-
level information [34]. In particular, [50] applied CLIP, a widely-used one-to-one VLM, to both an image classification
task (ImageNet [8]) and a region classification task (LVIS [16]) with a similar number of classes. Results showed that
classification accuracy dropped significantly from 60% on ImageNet to 19% on LVIS, which the authors hypothesized was
likely due to the fact that CLIP was trained in a one-to-one fashion on image-text pairs and did not learn to capture fine-
grained relationships between image regions and textual attributes. Additionally, [28] presents a distinct but related study
demonstrating that one-to-one VLMs like CLIP often fail to understand subtle differences between images. In particular,
given a contextual description, VLMs are evaluated on their ability to retrieve the correct image from a set of ten candidate
images that vary only in fine-grained details. Here, CLIP performs almost 60 points worse than human accuracy. Our work
extends these lines of research by systematically evaluating the effect of image-text pairwise complexity in the training dataset
on the fine-grained reasoning ability of one-to-one VLMs.

Several prior approaches have been proposed for learning fine-grained region-level information from image-text datasets.
One line of recent work (e.g. GLIP, X-VLM) leverages large quantities of human-labeled region-text pairs during model
training [30, 46]. A similar line of research has used object detectors pretrained on labeled region-text pairs to generate
pseudo-labels for image regions in a semi-supervised fashion [40, 43]; the generated region-label pairs can then be used
during model training. Although both approaches have led to significant improvements on vision-language tasks, obtaining
human-annotated region-text pairs is expensive, time-consuming, and difficult to extend to other domains, such as medical
images. In order to mitigate the need for human-annotated region-text pairs, [50] proposed RegionCLIP, which uses the
pretrained CLIP model [36] in a zero-shot fashion to match candidate image regions with plausible textual attributes; these
mappings are then utilized during training. This approach does not require ground-truth region-text pairs and was shown to
work well across open vocabulary and zero-shot object detection tasks; however, this approach relies heavily on the CLIP
model, which (a) has been shown to work poorly on localizing regions to text [50] and (b) cannot be accurately applied in
a zero-shot fashion to out-of-domain data (such as medical images) [36]. Our approach ViLLA aims to address these issues
by introducing a specific training phase to learn region-text mappings, rather than directly using an off-the-shelf pretrained
VLM model. Our work is also inspired by other recent studies in open vocabulary object detection [45, 31, 15, 37].

Another related line of work aims to learn fine-grained patterns by aligning individual image patches with textual tokens.
[44] proposed FiLIP, which leverages self-supervised contrastive learning to learn token-wise similarities between individual
image patches (generated from a vision transformer) and text tokens (generated from a text transformer). LOUPE follows
a similar set-up, although a game theoretic algorithm is utilized to learn fine-grained interactions [29]. In the medical do-
main, [20] introduced GLoRIA, which adds a local contrastive loss term to the optimization objective in order to match
image patches with textual tokens. Although these methods demonstrate performance improvements over standard one-to-
one VLMs on several tasks, learning relationships between all image patches and all text tokens is extremely computationally
expensive (e.g. FILIP leverages a number of computational tricks in order to make training feasible) and is likely to model
patches and tokens that are not semantically meaningful (e.g. solid-color image patches with no discernible features). Fur-
thermore, these approaches will be particularly expensive when applied to image-text pairs with high pairwise complexity,
which are likely to have a large number of textual tokens.

Learning from Real-World Multimodal Data: Our work relates closely to prior studies that have developed VLMs for
real-world datasets.

In the medical domain, early works learned medical image representations by training classification models with either (a)
labels generated by experts, which are often time-consuming and expensive to obtain, or (b) labels obtained from applying
labeling rules to radiologist reports, which are often noisy and limited to a few pre-defined categories [41, 1, 21, 42]. In
order to address these issues, [49] proposed ConVIRT, the first contrastive, self-supervised VLM for learning representations
directly from chest X-rays and radiologist reports. ConVIRT, which leverages a one-to-one training approach, was shown to
significantly outperform image-only baselines across a range of medical tasks. Other one-to-one VLMs (e.g. BiomedCLIP,
BioViL) have also been introduced for biomedical tasks [47, 3]. In order to improve the fine-grained reasoning ability



of ConVIRT, [20] proposed GLoRIA, which uses a local contrastive loss function as discussed in the previous section.
Adding this extra loss computation is expensive, and the model is trained using only a small portion of the radiology report
(“Impression” section). In the product domain, several recent studies have focused on training VLMs on fashion data, IKEA
catalogs, and car manuals [2, 6]. In order to capture finer-grained signal from multimodal fashion datasets, [48] introduced
MaskCLIP, which aligns image patches obtained from a garment segmentation mask with textual tokens extracted from
simple phrase-based captions; MaskCLIP is introduced as part of a pipeline for synthesizing fashion designs and is not
directly evaluated on fine-grained reasoning tasks.

Our work extends upon these lines of research by introducing a lightweight training mechanism for capturing fine-grained
relationships even when training datasets possess high image-text pairwise complexity. Of particular note, we demonstrate
that our approach ViLLA can effectively learn representations across multiple real-world domains.

B. Extended Dataset Complexity Evaluations with DocMNIST
In this section, we provide additional details on our dataset complexity evaluations as described in Section 4.

B.1. DocMNIST Implementation Details

We introduce DOCMNIST (adapted from the popular MNIST benchmark [9]), a customizable multimodal training dataset
consisting of synthetically-generated image-text pairs.

We first discuss our methodology for generating images. Each image in DOCMNIST is set to a size of 3 × 84 × 84; the
image is then subdivided into a square grid with 9 regions of size 3 × 28 × 28. We establish an attribute set A consisting
of 20 attributes divided across 4 categories as follows: 10 digits (zero, one, two, three, four, five, six, seven, eight, nine), 5
digit colors (purple, blue, green, yellow, red), 2 shapes (rectangle, circle), and 3 shape sizes (small, medium, and large). We
selected these attributes in order to emulate properties of real-world multimodal training datasets; for instance, size-based
attributes are often used in medical reports when describing anatomic features (e.g. “the heart appears enlarged”). We use the
following procedure to assign attributes to regions:

• First, we randomly choose a region from the set of nine possible regions.

• We randomly select a digit from the set of ten possible digits {zero, one, two, three, four, five, six, seven, eight, nine}.
We then sample a digit image from the MNIST dataset with the selected digit label and resize the image to 3× 28× 28.
The digit image is pasted within the chosen region.

• We randomly select a color from the set of five possible colors {purple, blue, green, yellow, red}. The selected color is
applied to the digit.

• Next, we randomly sample a shape from the set {no shape, rectangle, circle}. If no shape is selected, then no further
action is taken and the region will consist of only a digit and a color. If a rectangle or circle is selected, we then
randomly sample a size from the set {small, medium, large}. The shape is drawn in a random location within the region.
For circles, small corresponds to a radius of 1 pixel, medium corresponds to a radius of 3 pixels, and large corresponds
to a radius of 5 pixels. For rectangles, small corresponds to a length and width of 1 pixel, medium corresponds to a
length and width of 4 pixels, and large corresponds to a length and width of 7 pixels.

For each image, we repeat the above procedure until the number of region-attribute pairs reaches the user-specified value
for c, which defines the average pairwise complexity. The final size of the training dataset is constrained by a pre-defined
attribute budget b, which represents the total number of attributes across all images. We continue generating image-text pairs
until the budget b is reached.

Next, we discuss our methodology for generating text. For each image, we automatically generate a textual description by
filling the selected attributes into pre-defined templates. Templates are defined for each attribute category as follows, where
components in square brackets are replaced with the corresponding attribute:

• Digit: {“The image shows a [digit]”, “The digit appears to be [digit]”, “There is an image showing a [digit]”, “The
number is a [digit]”}

• Digit Color: {“The color is [color]”, “The digit appears to be [color]”, “There is a [color] image”, “The image is
[color]”}



2The digit appears to be three. The image is yellow. 

There is an image showing a nine. The digit appears to be three. The color is yellow. The size of the shape is medium. The digit 
appears to be six. There is a rectangle. The size of the shape is small. The digit appears to be blue. The digit appears to be purple. 
The image has a circle.

Image Text
Low pairwise 
complexity

High pairwise 
complexity

Score

10

There is a blue image. The number is a four. The digit appears to be blue. The shape is large. The image has a rectangle. There is a 
green image. There is an image showing a six. The number is a three. The shape is a rectangle. The image has a circle. The shape 
size is small. The digit appears to be five.

14

The number is a zero. There is a blue image. The image is purple. The number is a one. The shape is medium. The digit appears to 
be blue. There is an image showing a six. The digit appears to be yellow. There is a circle. There is a purple image. The digit 
appears to be six. The number is a three. The shape is a rectangle. The digit appears to be five. There is an image showing a eight. 
The shape is small. The color is red. There is a rectangle. The digit appears to be green.

The image shows a seven. The digit appears to be six. The digit appears to be blue. The shape appears to be a circle. There is a 
purple image. The color is red. The digit appears to be green. The shape is medium. The shape is small. The size of the shape is 
medium. The image shows a eight. The shape size is medium. The digit appears to be red. There is a circle. There is an image 
showing a three. The image shows a nine. There is a yellow image. The number is a seven. There is a green image. The shape size is 
small. The color is purple. The image shows a four. The number is a three. The size of the shape is large. The shape is a rectangle.
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The shape appears to be a rectangle. The image shows a two. The shape is a circle. There is a red image. The shape is small. The 
digit appears to be red. The digit appears to be two. There is a purple image. The digit appears to be seven. There is an image 
showing a seven. The number is a zero. The shape is medium. The digit appears to be purple. The shape is large. The image is 
purple. The shape size is small. The size of the shape is small. The image has a rectangle. The image shows a eight. There is a 
yellow image. There is a circle.

Figure 5. Examples of randomly-selected image-text pairs and the associated pairwise complexity scores from each of the six DOCMNIST
training datasets. Each textual attribute (bolded) appears in at least one region of the image. The image-text pairwise complexity score
measures the number of distinct region-attribute pairs.

• Shape: {“The shape is a [shape]”, “The shape appears to be a [shape]”, “There is a [shape]”, “The image has a [shape]”}

• Shape Size: {“The shape size is [size]”, “The size of the shape is [size]”, “The shape is [size]”}

In order to construct the final description, the generated sentences are shuffled and any duplicate sentences are pruned.

B.2. Extended Evaluations

In order to systematically evaluate the role of training dataset complexity on the fine-grained reasoning ability of a standard
one-to-one VLM, we generate a set of six DOCMNIST training datasets that vary in average image-text pairwise complexity.
In Figure 5, we provide examples of randomly-selected image-text pairs from each of the six training datasets.

For each generated DOCMNIST dataset, we train a standard one-to-one VLM to contrastively learn alignments between
images and the associated text. The image encoder consists of a ResNet-50 model initialized with pretrained CLIP RN50
weights [36, 18]. The output of the encoder is an L2-normalized embedding of dimension 1024. The text encoder consists of
a pretrained CLIP text encoder with frozen weights. Since textual descriptions may be longer than the maximum token limit
of the text encoder, we split each description into sentences, compute the embedding of each sentence, and then average the
embeddings together; this yields a single L2-normalized text embedding of dimension 1024. The VLM is optimized using a
standard bidirectional contrastive loss function with a temperature of 0.07. We train on a single NVIDIA V100 GPU for 100
epochs with early stopping if the loss fails to decrease for 5 consecutive epochs. We use an initial learning rate of 5e-5 and a
batch size of 256. We repeat this procedure with three different random seeds for each generated DOCMNIST dataset.

At inference time, we construct a fixed DOCMNIST test set with 1196 images; the images consist of a total of 5982 regions.
We evaluate our trained VLMs on both a fine-grained text → region retrieval task and a region → text retrieval task. We
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Figure 6. We expand on the results shown in Figure 3 by providing Precision@25 and Precision@100 metrics for the text → region
retrieval task. Across all metrics, representations generated using one-to-one VLMs exhibit significant performance degradations as the
average pairwise complexity of the dataset increases.

emphasize here that although the VLMs were trained at the image-level, we are specifically evaluating the ability of the
models to understand region-level features.

Given a textual query, the text → region retrieval task involves retrieving image regions that capture the content of the query.
To this end, we use the trained VLM to generate an embedding for each individual region in the DOCMNIST test set. Then,
for each of the twenty attributes in set A, we generate query sentences using the templates defined in the previous section;
this yields a total of twenty textual query embeddings. We use dot-product similarity to identify the top-k regions from the
DocMNIST test set that are most similar to each query. In Figure 3, we report the R-Precision metric, which defines k as the
total number of ground-truth regions in the DOCMNIST test set that possess the queried attribute.

We follow a similar procedure for the region → text retrieval task. For each of the 5.9k regions in the DOCMNIST test set,
the region → text retrieval task determines if we can identify the textual attributes depicted in the region. We compute the
dot-product similarity between the region embedding and the 20 attributes in set A. We note that a given region includes
at most one attribute from each of the four categories (as defined in Section B.1); as a result, we identify the top-scoring
attribute from each of the four categories (digit, digit color, shape, and shape size). In Figure 3, we report the R-precision
metric, which determines the percentage of the top-k identified attributes that are accurate; here, k is defined as the total
number of ground-truth attributes in the region, which will range between 2 and 4.

In Figure 6, we expand on the results shown in Figure 3 by providing Precision@25 and Precision@100 metrics for the text
→ region retrieval task. Additional details on the fine-grained text → region and region → text retrieval tasks are provided
in Appendix Section D.

C. ViLLA Implementation Details
In this section, we provide additional implementation details for ViLLA.

C.1. Datasets

In this work, we use four training datasets across various real-world domains: DocMNIST (synthetic images), DeepFashion
(product data), MIMIC-CXR (medical images), and COCO (natural images). Additional details on each dataset are provided
below:

DocMNIST: We create the synthetic DOCMNIST dataset using the procedure described in Section 4. In Section 4, we
generated six versions of the DOCMNIST training set with varying complexities; for the remainder of this work, we use the
version of the DOCMNIST training set with the highest complexity. Specifically, the training set has an average pairwise
complexity of c = 29.4 with a total of b = 300K attributes. We also generate a validation dataset with b = 10k attributes.

DeepFashion [33, 25]: The DeepFashion-Multimodal dataset consists of 44,096 high-resolution human images obtained
from clothing retail websites. We filter the dataset to include 42,537 images that have associated textual descriptions, and
we resize all images to 3 × 335 × 228. We randomly assign 70% of the dataset (corresponding to 29,694 images) to the
training set, 10% of the dataset (corresponding to 3985 images) to the validation set, and the remaining 20% of the dataset



The image shows a seven. The digit appears to be six. The digit appears to be blue. The shape appears to be a circle. There is a 
purple image. The color is red. The digit appears to be green. The shape is medium. The shape is small. The size of the shape is 
medium. The image shows a eight. The shape size is medium. The digit appears to be red. There is a circle. There is an image 
showing a three. The image shows a nine. There is a yellow image. The number is a seven. There is a green image. The shape size is 
small. The color is purple. The image shows a four. The number is a three. The size of the shape is large. The shape is a rectangle.

Image TextDataset

DocMNIST

DeepFashion

MIMIC-CXR

COCO

Her sweater has long sleeves, cotton fabric and plaid patterns. The neckline of it is lapel. The pants the lady wears is of long length. 
The pants are with denim fabric and solid color patterns. The female also wears an outer clothing, with knitting fabric and solid color 
patterns. This woman is wearing a pair of socks.

A giraffe eating food from the top of the tree. A giraffe standing up nearby a tree. A giraffe mother with its baby in the forest. Two 
giraffes standing in a tree filled area. A giraffe standing next to a forest filled with trees.

Findings and Impression sections from radiologist reports (excluded in this figure due to data use restrictions)

Figure 7. Examples of randomly-selected image-text pairs from each of the four training datasets: DocMNIST, DeepFashion, MIMIC-
CXR, and COCO. Note that due to data use restrictions for the MIMIC-CXR dataset, we provide a representative example of a chext X-ray
from the web and do not provide a text sample.

(corresponding to 8858 images) to the test set. Each image is annotated with structured labels, which we filter to include 58
labels divided across 16 categories as follows: glasses (eyeglasses, sunglasses, glasses in hand or on clothes), hat (yes), lower
clothing length (long, medium short, three-quarter, three-point), lower color (lattice, pure color, floral, color block, graphic,
striped), lower fabric (cotton, chiffon, leather, knitted, denim), neckline (square, lapel, round, standing, v-neck, suspenders),
neckwear (yes), outer color (pure color, graphic, color block, floral, lattice, striped), outer fabric (cotton, chiffon, knitted,
denim, leather), ring (yes), sleeve length (sleeveless, medium-sleeve, short-sleeve, long-sleeve), socks (leggings, socks),
upper color (floral, pure color, graphic, lattice, color block, striped), upper fabric (leather, chiffon, knitted, cotton, denim),
waist accessory (belt, some accessory), wrist accessory (yes).

MIMIC-CXR [26, 14]: The MIMIC-CXR dataset consists of 377,110 chest X-ray images and associated physician reports
obtained from the Beth Israel Deaconess Medical Center. Following prior work [20], we filter the dataset to include only
frontal views (AP or PA). We also remove any images from the dataset that do not have a valid report; here, we define a valid
report as one that has a non-empty Findings or Impression section. The final dataset includes a total of 231,564 images, and
we resize all images to 3 × 256 × 256. We randomly assign 70% of the dataset (162,417 images) to the training set, 10%
of the dataset (23,592 images) to the validation set, and 20% of the dataset (45,555 images) to the test set. Since medical
reports often include a large sentences with negative findings (e.g. the patient does not have pneumonia), we use RadGraph
to remove any sentences discussing absent entities [23]. The final textual description includes all remaining sentences from
the Findings and Impression sections.

COCO [32]: The Microsoft COCO training dataset consists of 114,648 natural images, each associated with five captions.
We use the train2017 data split for training and the val2017 data split for inference.

In order to estimate the average image-text pairwise complexity of each dataset (as shown in Table 1), we compute the number
of ground-truth region-attribute pairs in each image as follows.

• DocMNIST: As detailed in Section 4, the average image-text pairwise complexity of the DOCMNIST dataset is 29.4.

• DeepFashion: The DeepFashion-Multimodal dataset does not provide ground-truth region-attribute annotations. As
a result, we provide a rough estimate of image-text pairwise complexity; it is important to note that this value may
fluctuate depending on the selection of attributes and regions. We use the provided structured labels in the dataset as the
attribute set, and we determine appropriate locations for each label from the following set of regions: head, upper body,
hands, lower body, and feet. We count the number of attribute-region paris in each image and determine the average
pairwise complexity to be 7.9.



• MIMIC-CXR: Similar to DeepFashion, the MIMIC-CXR dataset does not provide ground-truth region-attribute anno-
tations. As a result, we provide a rough estimate of pairwise complexity; again, it is important to note that this value
may fluctuate depending on the selection of attributes and regions. In order to select attributes, we use RadGraph [23]
to extract all entities from the reports (filtered to only include nouns). We then use a series of hand-crafted rules to parse
sentences for location-related information, and we determine associations between identified entities and nine regions:
left upper lung, left lower lung, left lung, right upper lung, right lower lung, right lung, heart, osseous structures, and
stomach. We count the number of attribute-region pairs in each image and determine the average image-text pairwise
complexity to be 5.0.

• COCO: We estimate pairwise complexity by using the ground-truth region annotations provided in the COCO training
set. We count the number of ground truth region-attribute pairs in each image and determine the average image-text
pairwise complexity of the COCO dataset to be 6.8.

C.2. Extended Description of the Mapping Model (Stage 1)

Decomposing Images and Text: We decompose each image xi into ri regions, expressed as xi = {x0
i , x

1
i , . . . , x

ri
i }. There

are a variety of ways in which an image can be decomposed into regions, such as dividing images into equal-sized segments
(e.g. quadrants) or using region proposal networks (RPNs). Note that we place no restrictions on the size or coverage of
regions; regions can be of any size and can overlap. Ideally, regions should capture the key features in the image. We explore
a variety of region selection methods across our four datasets, which we discuss in further detail below:

• DocMNIST: As described in Section 4, each image is composed of 9 equally-sized candidate regions of size 3×28×28.
We only consider regions with at least one assigned attribute.

• DeepFashion: Since the DeepFashion dataset consists of human images, we divide each image lengthwise into 4 equally-
sized regions. Roughly, these regions correspond to the head, torso, legs, and feet; however, some variation is expected
due to poses.

• MIMIC-CXR: We train a custom region proposal network to divide each image into 3 anatomic regions: right lung,
left lung, and heart. To train the heart segmentation network, we used the JSRT dataset (http://db.jsrt.or.
jp/eng.php) which contains 247 chest x-rays with heart segmentation masks. To train the lung segmentation net-
work, we used the JSRT dataset (http://db.jsrt.or.jp/eng.php), which contains 247 chest x-rays with lung
segmentation masks, and two additional datasets published by the U.S. National Library of Medicine [22, 4], which
contain a total of 566 chest x-rays with lung segmentation masks. Each image in these datasets was preprocessed with
the following operations, performed in sequence: normalization to the range [0,1]; resized to size (224, 224); histogram
equalization. Both the lung and heart segmentation networks were trained with a batch size of 16 for 150 epochs using
a UNet [38] architecture and a learning rate of 1e-4. We used random brightness contrast, gaussian blur, and affine
transforms as augmentations during training. The predicted segmentation masks were postprocessed with the following
operations, performed in sequence: binary opening operation with a disk (radius=5) structuring element; keeping only
the largest contiguous predicted segment; binary fill holes; binary dilation with a disk (radius=5) structuring element.

• COCO: We use a pretrained RPN with identical settings to prior work [50]. The RPN generates 300 candidate regions
for each image. For training the mapping model (stage 1), we select 20 regions from the set of 300 such that selected
regions share minimal overlap. For training the VLM (stage 2), we randomly sample 100 regions from the set of 300.

Similarly, we decompose each textual description ti into ai attributes, expressed as ti = {t0i , t1i , . . . , t
ai
i }. Dataset-specific

implementation details are provided below:

• DocMNIST: As described in Section 4, the DOCMNIST dataset includes a total of 20 attributes: zero, one, two, three,
four, five, six, seven, eight, nine, purple, blue, green, yellow, red, rectangle, circle, small, medium, and large. We extract
attributes in this set from the textual description.

• DeepFashion: We use the 58 provided structured labels (described in Section C.1) as our set of relevant attributes.

• MIMIC-CXR: We use RadGraph, an off-the-shelf entity extractor, to identify entities in each textual description [23].
RadGraph classifies each entity with one of three labels: Definitely Present, Uncertain, and Definitely Absent; we filter
the set of identified entities to only include those that are Definitely Present. We then use the spaCy library to filter

http://db.jsrt.or.jp/eng.php
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http://db.jsrt.or.jp/eng.php


the set of entities to those that are nouns. Finally, we identify the 50 entities that occur most frequently in the training
dataset as our final set of attributes.

• COCO: In line with with prior work, we extract 4.7k textual attributes (e.g. giraffe, man, bicycle, etc.) from the captions
[50].

Representing Regions and Attributes: We generate embeddings for image regions using the procedure described in Section
5.1. As described in Section 5.1, the output of the image encoder is passed through a series of p projection heads, where each
projection head consists of a linear layer, a ReLU function, and a second linear layer. For our experiments with DocMNIST,
DeepFashion, and MIMIC-CXR, we set p to be equal to the total number of attributes in the dataset; as a result p equals 20,
58, and 50 respectively. We find that using a distinct projection heads for each attribute allows the model to learn fine-grained
differences between similar attributes (e.g. distinguishing cotton and chiffon fabric in DeepFashion). This is particularly
useful for real-world datasets, where images often exhibit high inter-class similarity [49]. However, using distinct projection
heads for each attribute may be ineffective if (a) there are a large number of attributes in the dataset or (b) there is high
diversity across images and attributes; in these cases, we find that models can effectively learn patterns with a fewer number
of projection heads. Consequently, for our experiments with COCO, we use a single projection head (p = 1).

Additionally, since the COCO dataset is comprised of natural images and likely exhibits a similar distribution to the CLIP
pretraining dataset, we find that an off-the-shelf CLIP model (with no additional tuning) can map regions to attributes with
relatively high accuracy (as shown in Table 5). As a result, in order to capture the knowledge of the CLIP model, we compute
the final embedding as a weighted average of (a) the input embedding provided to the projection head and (b) the output
embedding generated by the projection head; this approach is similar to prior work on feature adapters [12]. Our approach
generates more accurate region-attribute mappings than the original off-the-shelf CLIP model (by 4.9 points as shown in
Table 5).

We generate embeddings for attributes using the procedure described in Section 5.1. We insert each attribute into pre-
defined prompt templates and extract representations from a pretrained text encoder. Below, we provide dataset-specific
implementation details:

• DocMNIST: We insert each attribute into the prompt templates defined in Section B.1. We represent each attribute as
the average of its associated prompt embeddings.

• DeepFashion: We insert each attribute into the following pre-defined prompt templates, where components in square
brackets are replaced with the attribute: {“The person wears a [attribute]”, “There is a [attribute]”, “The person is wear-
ing [attribute]”, “The man is wearing a [attribute]”, “The woman is wearing a [attribute]”, “The clothing is [attribute]”}.
We represent each attribute as the average of its associated prompt embeddings.

• MIMIC-CXR: For each attribute, we identify all sentences in the training dataset that mention the attribute and then
filter the list to include the 200 most frequently-occurring sentences. We represent each attribute as the average of its
associated sentence embeddings.

• COCO: We insert each attribute into 81 prompt templates defined in a prior study [50]. Sample prompt templates
include: {“A photo of a [attribute]”, “A good photo of the [attribute]”, “A photo of the small [attribute]”}. We represent
each attribute as the average of its associated prompt embeddings.

Training Procedure: The mapping model is optimized with the following batch-wise loss function (where L(xi, ti) is
defined in Section 5.1).

LB =
1∑|B|

j=1 |tj |

|B|∑
i=1

L(xi, ti)

We train the mapping model on a single NVIDIA A100 GPU with an initial learning rate of 1e-4. Dataset-specific training
details are provided below, with hyperparameters selected based on mapping accuracy on a validation set as well as GPU
memory constraints:

• DocMNIST: We use a batch size of 48 and train for 30 epochs. We set the loss temperature as τ = 0.07.



• DeepFashion: We use a batch size of 48 and train for 20 epochs. We set the loss temperature as τ = 0.07.

• MIMIC-CXR: We use a batch size of 48 and train for 5 epochs. We set the loss temperature as τ = 1.

• COCO: We use a batch size of 24 and train for 5 epochs. We set the loss temperature as τ = 0.07.

C.3. Extended Description of the VLM Model (Stage 2)

We use the mapping model from Section 5.1 to assign attributes to regions as follows. For DocMNIST, DeepFashion, and
MIMIC-CXR, our approaches for selecting regions yield regions with zero, one, or multiple attributes. In order to account
for a variable number of attributes that may be associated with each region, we use the following procedure to map attributes
to regions. For a sample (xi, ti) and textual attribute k ∈ ti, we compute the pairwise dot product between Pk(ei) and hk

i ,
resulting in a score vector v ∈ Rri×1. We then assign k to all regions with a score greater than max(v) − ϵ, where ϵ is a
pre-defined threshold. As desired, this procedure assigns zero, one, or multiple attributes to a region. We assign the value
of ϵ by evaluating the quality of the region-attribute mappings on a validation set (details on this evaluation are provided in
Appendix Section D.2). We select ϵ = 0.2 for DocMNIST, ϵ = 0.2 for DeepFashion, and ϵ = 0.1 for MIMIC-CXR.

For COCO, we select candidate regions using an RPN, which generally yields tight bounding boxes that capture a single
attribute. In this case, we invert the above procedure and instead assign regions to attributes. For a sample (xi, ti) and textual
attribute k ∈ ti, we compute the pairwise dot product between Pk(ei) and hk

i . We repeat this computation for all textual
attributes in ti, resulting in a final score vector v ∈ Rri×ai . We then assign each region to its highest-scoring attribute. As
desired, this procedure assigns each region to a single attribute. Additionally, using this procedure ensures that our work is
consistent with prior object detection models trained on the COCO dataset [50].

For each generated region-attribute pair, we replace the attribute with the segment of the original textual description contain-
ing the attribute; for example, the attribute “red” may be replaced with the sentence “The digit appears to be red” from the
original description. We perform this step in order to allow for better reasoning over textual cues when training the VLM.

We then augment the training dataset to include generated region-attribute pairs in addition to the original image-text samples.
We use the augmented dataset to train a one-to-one VLM. Below, we provide implementation details for each dataset.

• DocMNIST: The image encoder is initialized with weights from a pretrained CLIP ResNet-50. The text encoder takes
the form of a pretrained CLIP text encoder with frozen weights. We optimize the VLM using a standard bidirectional
contrastive loss function with the temperature parameter set as τ = 0.07. We train the VLM on a single NVIDIA V100
GPU with an initial learning rate of 5e-5 and a batch size of 256.

• DeepFashion: The image encoder is initialized with weights from a pretrained CLIP ResNet-50. The text encoder takes
the form of a pretrained CLIP text encoder with frozen weights. We optimize the VLM using a standard bidirectional
contrastive loss function with the temperature parameter set as τ = 0.07. We train the VLM on a single NVIDIA V100
GPU with an initial learning rate of 5e-5 and a batch size of 96.

• MIMIC-CXR: The image encoder is initialized with weights from a pretrained ConVIRT ResNet-50 using the imple-
mentation provided in ViLMedic [7]. The text encoder takes the form of a pretrained SBERT text encoder with frozen
weights. We optimize the VLM using a standard bidirectional contrastive loss function with the temperature parameter
set as τ = 1.0. We train the VLM on a single NVIDIA V100 GPU with an initial learning rate of 5e-5 and a batch size
of 196.

• COCO: We use the training framework and pretrained configurations provided by [50]. The image encoder is initialized
with weights from a pretrained CLIP ResNet-50. The text encoder takes the form of a pretrained CLIP text encoder
with frozen weights. The VLM is optimized using both a contrastive loss function and a distillation loss function, as
implemented by [50]. We modify the contrastive loss function provided by [50] as follows: given a region-attribute pair,
we expand the negative set to include all attributes, rather than just the other attributes in the batch. We train the VLM
on 8 NVIDIA A100 GPUs with an initial learning rate of 0.002 and a batch size of 96.

D. Experimental Details
In this section, we provide additional details on our experiments.



D.1. Evaluation Tasks

Here, we provide further details on our three evaluation tasks: zero-shot object detection, text → region retrieval, and region
→ text retrieval.

D.1.1 Zero-Shot Object Detection

We compare ViLLA with three prior zero-shot object detection methods; we provide additional details on these methods
below.

• OVR-CNN [45]: OVR-CNN is an object detector trained with both annotated region-category pairs as well as image-
caption pairs. OVR-CNN is trained using 114k image-text pairs from the COCO dataset.

• CLIP [36]: CLIP is a VLM that leverages contrastive self-supervised learning to learn relationships between paired
image-text samples. We use a CLIP model with a ResNet-50 backbone, which was trained on 400 million image-text
pairs.

• RegionCLIP [50]: RegionCLIP was recently introduced for improving the fine-grained reasoning ability of CLIP. Re-
gionCLIP uses the pretrained CLIP model in a zero-shot fashion to match candidate image regions with plausible textual
attributes; these mappings are then used during training. We compare against two versions of RegionCLIP: (a) a version
trained on 3 million image-text pairs from the Conceptual Captions (CC3M) dataset and (b) a version trained on 114k
image-text pairs from the COCO dataset. Our approach is most comparable to version (b); however, this model is not
made publicly available, resulting in some missing values in the corresponding row in Table 2.

D.1.2 Text → Region Retrieval

The text→region retrieval task evaluates the ability of a VLM to reason over fine-grained relationships between image regions
and textual attributes. Given a textual query (e.g. “The person is wearing a hat”), the text→region retrieval task determines
if we can retrieve image regions that capture the content of the query. Below, we provide implementation details for the
text→region retrieval task on the DOCMNIST and DeepFashion datasets:

• DocMNIST: We consider 20 textual queries for DocMNIST, with each query representing a distinct attribute from the
following set: {zero, one, two, three, four, five, six, seven, eight, nine, purple, blue, green, yellow, red, rectangle, circle,
small, medium, large}. We generate textual queries by inserting each attribute into the prompt templates provided in
Appendix Section B.1.

• DeepFashion: We construct the text→region retrieval task by extracting 7.9k regions from the DeepFashion test set.
The DeepFashion dataset includes human-parsing labels for a subset of the images, where various features of each
image (e.g. glasses, hat, etc.) are labeled with pixel-level annotations in the image; we use the human-parsing labels
to identify the ground-truth attributes in each region. We then construct 46 textual queries for DeepFashion, with each
query representing a distinct attribute from the set listed in Section C.1. Although the original attribute set includes 58
attributes across 16 categories, we include only (a) attributes that occur at least once in the retrieval set of 7.9k regions
and (b) attributes that are included in the provided human-parsing labels; this results in a total of 46 attributes across
14 categories. For the Precision@25 and Precision@100 metrics reported in Table 3, we further filter this list to only
include attributes that occur at least 25 and 100 times in the retrieval set of 7.9k regions; this yields 40 and 25 attributes
respectively. For each attribute, we construct a textual query by inserting the attribute into a custom prompt template.
Prompt templates were designed to emulate linguistic patterns in the training set and are constructed based on attribute
categories, as shown below (categories are italicized and attributes are in parentheses).

– glasses (sunglasses): “The person wears sunglasses”

– hat (yes): “The person wears a hat”

– lower color (floral, pure color, graphic, lattice, color block, striped): “The lower clothing has [attribute] patterns”

– lower fabric (leather, chiffon, knitted, cotton, denim): “The lower clothing is [attribute]”

– neckline (square, lapel, round, standing, v-neck, suspenders): “The neckline is [attribute]”

– neckwear (yes): “The person has neckwear”



– outer color (floral, pure color, graphic, lattice, color block, striped): “The sweater has [attribute] patterns”

– outer fabric (leather, chiffon, knitted, cotton, denim): “The outer clothing is [attribute]”

– ring (yes): “The person is wearing a ring”

– socks (leggings, socks): “The person wears [attribute]”

– upper color (floral, pure color, graphic, lattice, color block, striped): “The upper clothing has [attribute] patterns”

– upper fabric (chiffon, knitted, cotton, denim): “The upper clothing is [attribute]”

– waist accessory (belt): “The person is wearing a belt”

– wrist accessory (yes): “There is an accessory on the wrist”

We compare ViLLA with four baselines; we provide additional details on these methods below.

• CLIP-ZS [36]: The CLIP-ZeroShot (CLIP-ZS) baseline applies an off-the-shelf CLIP model to the text→region retrieval
task in a zero-shot manner. We use a CLIP model with a ResNet-50 visual backbone. We encode each textual query
using the CLIP text encoder; then, the regions with the highest dot-product similarities are identified.

• CLIP-FT-Img: The CLIP-FineTuned-Image (CLIP-FT-Img) baseline applies a fine-tuned CLIP model to the
text→region retrieval task. We fine-tune a CLIP model with a ResNet-50 visual backbone on image-text pairs from
the DocMNIST and DeepFashion training datasets. The model is optimized using a standard bidirectional contrastive
loss function with a temperature of 0.07. We train on a single NVIDIA V100 GPU for 100 epochs with early stopping
if the loss fails to decrease for 5 consecutive epochs. We use an initial learning rate of 5e-5 and a batch size of 256 for
DocMNIST and 96 for DeepFashion. In order to perform text→region retrieval, we encode each textual query using the
CLIP text encoder and identify regions with the highest dot-product similarities.

• CLIP-FT-Reg: The CLIP-FineTuned-Region (CLIP-FT-Reg) baseline applies a fine-tuned CLIP model to the
text→region retrieval task. We fine-tune a CLIP model with a ResNet-50 visual backbone on both image-text and
region-text pairs, where each region is aligned with the entire textual description. The model is optimized using a mod-
ified bidirectional contrastive loss function with a temperature of 0.07. Since each batch now includes multiple regions
that share the same textual description, we modify the contrastive loss function such that for a given region or textual
description, the negative set will not include any other regions or textual descriptions from the same image. We train on
a single NVIDIA V100 GPU for 100 epochs with early stopping if the loss fails to decrease for 5 consecutive epochs.
We use an initial learning rate of 5e-5 and a batch size of 256 for DocMNIST and 96 for DeepFashion. In order to
perform text→region retrieval, we encode each textual query using the CLIP text encoder and identify regions with the
highest dot-product similarities.

• CLIP-ZS-Map [36, 50]: The CLIP-ZeroShot-Mapping (CLIP-ZS-Map) baseline first applies CLIP in a zero-shot manner
to generate region-attribute pairs (following the procedure in Section 5.2). We set ϵ = 0.1 for DocMNIST and ϵ = 0.01
for DeepFashion (details on the selection ϵ are provided in Appendix Sections C.3 and D.2). Then, a CLIP model with
a ResNet-50 visual backbone is fine-tuned with image-text pairs as well as the generated region-attribute pairs. This
baseline is comparable to RegionCLIP [50]. The model is optimized using a standard bidirectional contrastive loss
function with a temperature of 0.07. We train on a single NVIDIA V100 GPU for 100 epochs with early stopping if
the loss fails to decrease for 5 consecutive epochs. We use an initial learning rate of 5e-5 and a batch size of 256 for
DocMNIST and 96 for DeepFashion. In order to perform text→region retrieval, we encode each textual query using the
CLIP text encoder and identify regions with the highest dot-product similarities.

D.1.3 Region → Text Retrieval

Given an image region, the region→text retrieval task determines if we can retrieve the textual attributes depicted in the
region. We follow a similar set-up to the text→region retrieval task detailed in Appendix Section D.1.2, and we compare
ViLLA with the same baselines: CLIP-ZS, CLIP-FT-Img, CLIP-FT-Reg, and CLIP-ZS-Map. We note that for the DocMNIST
dataset, a given region includes at most one attribute from each of the four categories (as defined in Section B.1); as a result,
we retrieve at most one attribute from each of the four categories (digit, digit color, shape, and shape size). In Figure 3, we
report the R-precision metric, which determines the percentage of the top-k retrieved attributes that are accurate; here, k is
defined as the total number of ground-truth attributes in the region.



We additionally evaluate retrieval performance on the CheXpert 5x200 benchmark, which consists of 1000 chest X-rays
across five disease categories (atelectasis, cardiomegaly, consolidation, pulmonary edema, and pleural effusion) [20]. The
dataset is class-balanced, with 200 chest X-rays corresponding to each disease; additionally, the chest X-rays were selected
such that no X-ray depicts more than one disease. Disease labels are converted into textual phrases using pre-defined prompts.
Then, given a chest X-ray, the goal is to retrieve the textual phrase corresponding to the correct disease. In Table 1, we report
retrieval accuracy (which is equivalent to a Precision@1 score) in line with prior work [20].

In order to convert disease labels into text, we use the same process that we use to generate attribute embeddings for MIMIC-
CXR. For each disease label, we use the filtered set of RadGraph entities created in Section C.2 to identify all sentences in the
training dataset that mention the disease; we then filter the list to include the 200 most frequently-occurring sentences. We
represent each disease as the average of its associated sentence embeddings. If a disease label does not occur in the filtered
RadGraph entity set, we instead represent the disease by encoding the following simple prompt: “patient with [disease]”.

Although the CheXpert 5x200 task has been previously considered as an image→text retrieval task, we instead formulate
it as a region→text retrieval task when evaluating ViLLA. We do so by considering each X-ray as a set of four regions -
right lung, left lung, heart, full image - and using ViLLA to generate embeddings for each region; then, we perform retrieval
by computing the maximum pairwise similarity with the text phrases. Note that for our baselines, we follow the standard
image→text retrieval approach in order to remain consistent with prior work [20].

We compare ViLLA with three baselines; we provide additional details on these methods below. Of these baselines, we note
that ConVIRT and BioViL can be classified as one-to-one VLMs; however, GLoRIA is not a one-to-one VLM due to the use
of a fine-grained local contrastive loss function.

• ConVIRT [49]: ConVIRT is a self-supervised, one-to-one VLM trained on chest X-rays and associated radiology reports.
We use the implementation of ConVIRT provided in ViLMedic [7], which is trained on MIMIC-CXR.

• BioViL [3]: BioViL is a one-to-one VLM trained on chest X-rays and associated radiology reports. BioViL is trained
using two self-supervised loss functions: (1) a standard image-text contrastive loss as well as (2) a masked language
modeling loss to improve the quality of the text encoder. BioViL is trained on MIMIC-CXR.

• GLoRIA [20]: GLoRIA is a VLM trained on chest X-rays and radiology reports. GLoRIA leverages two self-supervised
loss functions: (1) a standard image-text contrastive loss for global alignment between images and text as well as (2) a
local contrastive loss for finer-grained alignment between image patches and words. GLoRIA is not a one-to-one model.
We evaluate three variants of GLoRIA: (1) GLoRIA-Global Only, which represents an image with a single image-level
embedding, (2) GLoRIA-Local Only, which uses all image patch embeddings, and (3) GLoRIA-Global+Local, which
uses both the image-level embedding as well as all patch embeddings. We use the implementation of GLoRIA provided
in ViLMedic [7], which is trained on MIMIC-CXR.

D.2. Extended Details on Evaluating Region-Attribute Mappings

In Section 6.3, we evaluated the quality of the region-attribute pairs generated using the mapping model. Here, we provide
additional implementation details related to these evaluations.

As described in Section 5.2, we use our trained mapping model (Stage 1 of ViLLA) to generate region-attribute pairs. Our goal
here is to quantitatively measure the number of generated region-attribute pairs that capture correct associations. However,
measuring region-attribute quality requires ground-truth pairings, which are not always provided in real-world datasets. As a
result, we generate ground-truth region-attribute pairings for each of our four pretraining datasets as follows:

• DocMNIST: Since DOCMNIST is a synthetically-generated dataset, we have access to the ground-truth attributes asso-
ciated with each region.

• DeepFashion: DeepFashion provides human parsing labels for a subset of the images, where various features of each
image (e.g. glasses, hat, etc.) are labeled with pixel-level annotations in the image. We use our computed regions (four
per image) and the human parsing labels to assign attributes to their ground-truth regions.

• MIMIC-CXR: MIMIC-CXR does not provide any region-level annotations. As a result, we estimate region-attribute
quality by focusing only on two entities - cardiomegaly and pacemaker; these entities were selected due to their consis-
tent association with a single region: the heart. We evaluate mapping accuracy using only this subset of two ground-truth
region-attribute pairs. In the future, we aim to conduct user studies to better evaluate the quality of region-attribute map-
pings on datasets like MIMIC-CXR that lack region-level annotations.



• COCO: On the COCO dataset, we train our mapping model using candidate regions generated by a RPN; however, we
do not have have access to ground-truth attribute pairings for these generated regions. As a result, we estimate region-
attribute mapping quality by using the annotated, ground-truth regions in the COCO dataset. We evaluate the number of
ground-truth regions that can be accurately mapped to their corresponding attributes.

For each image-text sample, we are given a set of generated region-attribute mappings as well as a set of ground-truth region-
attribute pairs. A region-attribute pair is correct if it occurs in both sets. We compute mapping precision and mapping recall
with the following formulas:

mapping precision =
number of correct region-attribute mappings

number of generated region-attribute mappings

mapping recall =
number of correct region-attribute mappings
number of ground-truth region-attribute pairs

As our final quality metric, we report the mapping F1 score in Table 5, which is computed using the standard formula for F1
scores:

mapping F1 =
2 ∗ mapping precision ∗ mapping recall

mapping precision + mapping recall

We note here that there exists a tradeoff between mapping precision and mapping recall that is related to the choice of ϵ
in Section 5.2. If ϵ is high, then ViLLA will generate a large number of region-attribute pairs, resulting in a low mapping
precision and a high mapping recall. If ϵ is low, then ViLLA will generate a small number of region-attribute pairs, resulting
in a high mapping precision and a low mapping recall. Empirically, as stated in Appendix Section C.3, we select the value
of ϵ by computing mapping F1 scores on a validation set (if sufficient ground-truth region-attribute pairings are available).
We note here that when ground-truth region-attribute pairings are limited (such as in the MIMIC-CXR dataset), we set ϵ to a
default value of 0.1.
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