
Supplementary Material -
FastViT: A Fast Hybrid Vision Transformer

using Structural Reparameterization

Pavan Kumar Anasosalu Vasu† James Gabriel Jeff Zhu Oncel Tuzel Anurag Ranjan†

Apple

Ablation Description Top-1 Mobile
Acc. Latency (ms)

- Baseline 79.8 1.4

Normalization BatchNorm → LayerNorm 79.7 1.7

Activation GELU → ReLU 79.4 1.3
GELU → SiLU 79.7 1.4

Hybrid Stages

[RepMix, RepMix, RepMix, SelfAttn.] 80.6 1.6
[RepMix, RepMix, SelfAttn., SelfAttn.] 81.2 3.7
[RepMix, SelfAttn., SelfAttn., SelfAttn.] 81.5 5.0
[SelfAttn., SelfAttn., SelfAttn., SelfAttn.] 82.0 11.7

Table 1: Ablation for FastViT-S12 on ImageNet-1K. All
models are trained and benchmarked using the same set-
tings described in main paper.

A. Ablations

A.1. Architectural Choices

The primary motivation behind the design choices made
for FastViT is efficient mobile deployment. The cost of
self-attention blocks is very high, especially when there are
many tokens. In early stages (when the number of tokens
are high), self attention can be replaced with efficient al-
ternatives with small accuracy degradation but significantly
lower latency. In Table 4 of main paper, we analyzed this
for last two stages. In Table 1, we present the full analysis
for S12 architecture.

A.2. Large Kernel Convolutions

In Table 2, we ablate over various kernel sizes in FFN
and patch embedding layers and report their Top-1 accuracy
on ImageNet-1k along with mobile latency on iPhone 12
Pro. We observe that performance of the model stagnates
beyond the kernel size of 7×7, while the overall FLOPs,
latency and parameter count increases. Hence, we use 7×7
kernel size in our network architecture.

Kernel Size Params FLOPs Mobile Top-1
(M) (G) Latency(ms) (%)

3×3 8.7 1.7 1.3 78.9
5×5 8.7 1.8 1.4 79.5
7×7 8.8 1.8 1.4 79.8
9×9 8.8 1.8 1.5 79.6

11×11 8.8 1.9 1.5 79.8

Table 2: Top-1 accuracy on ImageNet-1k dataset for
FastViT-S12 model with varied kernel sizes in FFN and
patch embedding layers.

Ablation Description Top-1 Train
Acc. Time (hrs)

No OverParam. - 80.0 31.3

Train-Time OverParam. Stem + Patch Emb. 80.6 33.4
Stem + Patch Emb. + ConvFFN 80.6 40.1

Table 3: Train-time overparameterization ablation for
FastViT-SA12 on ImageNet-1K. Extension to Table 3 in
main paper. Train time is wall clock time elapsed at the
end of a training run.

A.3. Training Time

We provide a coarse ablation of this in Table 3 of main
paper. In our model, we do not overparameterize every el-
ement of the architecture, especially the parameter dense
blocks like ConvFFN. In fact, we do not obtain any im-
provement by overparameterizing ConvFFN layers, verified
empirically in Table 3. Since our model is partially overpa-
rameterized (only convolutional stem and patch embedding
layers) during training, we do not see a significant degra-
dation in train time as opposed to other train-time overpa-
rameterized models in literature which overparameterize all
layers in a network. Note, all models were trained using the
same hardware as described in Section 4.1 of main paper.



B. Experiments

B.1. Benchmarking

We follow the same protocol prescribed in [15] while
benchmarking the model on an iPhone 12 Pro mobile de-
vice. To benchmark the models on desktop-grade GPU
NVIDIA RTX-2080Ti, we first warmup the device by run-
ning the forward pass of TensorRT model for 100 iterations
and then benchmark the model over a 100 iterations. We
report the median latency value from 100 estimates. For
image classification models we use a batchsize of 8 (similar
approach was adopted in [7]) and a batchsize of 2 (due to
GPU memory limits) for semantic segmentation and object
detection models. Both mobile and GPU latency estimates
can have a standard deviation of ±0.1ms.

While benchmarking ConvNeXt [6] models on mobile
device, we noticed the inefficiencies introduced by reshape
ops causing increase in latency. While majority of hybrid
models that use self-attention based token mixers require
explicit reshaping of tensors. We can avoid this operation
in ConvNeXt basic block by simply using a channel first
implementation of LayerNorm and replacing nn.Linear
layers with 1×1 convolutions. This simple change results
in significant improvement in runtime as shown in Table 4.

Model Mobile Latency (ms)

Before After

ConvNeXt-T 33.5 3.7
ConvNeXt-S 66.4 5.4
ConvNeXt-B 89.1 8.4

Table 4: Benchmarking ConvNeXt before and after modifi-
cations.

Hyperparameter Training Fine-tuning
T8, T12, S12, SA12, SA24, SA36, MA36 SA36, MA36

Stochastic depth rate [0.0, 0.0, 0.0, 0.1, 0.1, 0.2, 0.35] [0.2, 0.4]
Input resolution 256×256 384×384
Data augmentation RandAugment RandAugment
Mixup α 0.8 0.8
CutMix α 1.0 1.0
Random erase prob. 0.25 0.25
Label smoothing 0.1 0.1
Train epochs 300 30
Warmup epochs 5 None
Batch size 1024 1024
Optimizer AdamW AdamW
Peak learning rate 1e-3 5e-6
LR. decay schedule cosine None
Weight decay rate 0.05 1e-8
Gradient clipping None None
EMA decay rate 0.9995 0.9995

Table 5: Training hyperparameters for ImageNet-1k exper-
iments.

Model Eval Param FLOPs Mobile Top-1
Image Latency Acc.
Size (M) (G) (ms) (%)

MobileNetV3-S*[3] 224 2.5 0.06 0.8 67.4
MobileOne-S0[15] 224 2.1 0.3 0.8 71.4
MobileNetV2-x1.0[11] 224 3.4 0.3 0.9 72.0
DeiT-Ti[14] 224 5.7 1.3 4.8 72.2
MobileNeXt-x1.0[17] 224 3.4 0.3 0.9 74.0
EdgeViT-XXS[8] 224 4.1 0.6 1.4 74.4
MNASNet-A1[12] 224 3.9 0.3 1.0 75.2
FastViT-T8 256 3.6 0.7 0.8 75.6

MobileNetV2-x1.4[11] 224 6.9 0.6 1.4 74.7
MobileNetV3-L[3] 224 5.4 0.2 1.1 75.2
MobileNeXt-x1.4[17] 224 6.1 0.6 1.3 76.1
EfficientNet-B0[13] 224 5.3 0.4 1.7 77.1
EdgeViT-XS[8] 224 6.7 1.1 3.0 77.5
MobileOne-S3[15] 224 10.1 1.8 1.5 78.1
CMT-T∗[2] 160 9.5 0.6 3.8 79.1
EfficientNet-B1[13] 256 7.8 0.7 2.5 79.1
FastViT-T12 256 6.8 1.4 1.2 79.1

MobileOne-S4[15] 224 14.8 2.9 1.9 79.4
DeiT-S[14] 224 22.0 4.6 5.3 79.8
FastViT-S12 256 8.8 1.8 1.4 79.8

Table 6: Comparison of different state-of-the-art Mobile ar-
chitectures on ImageNet-1k classification. HardSwish is not
well supported by Core ML, ∗ denotes we replace it with
GELU for fair comparison.

B.2. Image Classification

We provide hyperparameters used for training models
on ImageNet-1k dataset reported in Table 5 in main paper.
Models are trained at resolution 256×256 and fine-tuned for
384×384. We follow the same training setup as [16, 14].
The hyperparameters used for all FastViT variants are listed
in Table 5. For distillation experiments, we use RegNetY-
16GF [9] as the teacher model similar to [14]. Additional
hyperparameters are same as our image classification train-
ing procedure and are listed in Table 5. When trained using
different seeds, results are within ±0.2% in Top-1 accuracy.

B.3. Comparison with Mobile Architectures

We compare our model against highly efficient mobile
architectures in Table 6 and in Figure 1. Our model outper-
forms recent state-of-the-art MobileOne [15] architecture
which is purely convolutional. Our model also outperforms
EdgeViT [8], which is a recent state-of-the-art light-weight
ViT architecture.

B.4. Model Scaling

In this work, we sample architectures that are smaller
than 50M parameters for efficient deployment. Similar to
the Swin-T [5] variant, we use a stage compute ratio of
1:1:3:1 most of our variants and for the smallest variant we
use 1:1:2:1. For our models, width doubles at each new



1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Mobile Latency (in ms) (lower is better)

67.5

70.0

72.5

75.0

77.5

80.0

82.5
Im

ag
eN

et
-1

k 
To

p-
1 

A
cc

ur
ac

y 
(%

) (
hi

gh
er

 is
 b

et
te

r)

PoolFormer
EdgeViT
RSB-ResNet
EfficientNet
MobileNeXt
MobileNetV3
MobileNetV2
MobileOne
FastViT (Ours)

Figure 1: Accuracy vs. Mobile latency scaling curves of recent state-of-the-art Mobile Architectures and FastViT variants.
The models are benchmarked on iPhone 12 Pro using the appropriate image sizes described in Table 6.

FastViT-MA36

FC Layer

FC Layer

FC Layer

Em
b.

1216
3

10

96
MANO 

Inference

Projection

LV3D

LJ3D

LJ2D

Input Image Image Encoder Regression Layers

Figure 2: Overview of 3d hand mesh estimation framework.

stage. We use configurations of [48, 96, 192, 384], [64,
128, 256, 512] and [76, 152, 304, 608] in this paper. The
tiny(“T”) variants use MLP expansion ratio of 3. Rest of the
variants use an MLP expansion ratio of 4.

B.5. 3D Hand mesh estimation

Architecture As shown in Figure 2, our model uses sim-
ple regression layers to regress weak perspective camera,
pose and shape parameters of the MANO model [10]. These
layers are single fully connected layers unlike deep regres-
sion layers used in [1]. We regress 6D rotations [18] for
all joints in MANO model. There are 3 losses to minimize
in our framework, LV 3D, 3D vertex loss between predicted

mesh and ground truth mesh. LJ3D, 3D joint loss between
predicted 3D joints and ground truth 3D joints. LJ2D, 2D
joint loss between projected 3D joints and ground 2D key-
points.

Setup We train our model on FreiHand [19] dataset, that
contains 130,240 training images and 3,960 test images.
Following METRO [4], we train our model on 224×224
images from the dataset using Adam optimizer. The mod-
els are trained for 200 epochs, with an initial learning rate
of 1e-4 and decayed by a factor of 10 after 100 epochs. We
initialize the backbone with weights obtained by pretraining
on ImageNet-1k dataset. The weighting for all the losses in
our framework is set to 1.0.



Image Predicted 3D Joints Predicted 3D Mesh Image Predicted 3D Joints Predicted 3D Mesh

Figure 3: Qualitative results from our framework on FreiHand test set. 3D predictions are projected on to the image using
weak perspective camera model, parameters for this camera model is also predicted by the model.

Results Figure 3 shows qualitative results from our
framework on FreiHand test set. Even though our model is
simple, it can model complicated gestures. Our model pre-
dicts reliable poses even in the presence of occlusion from
hand-held objects.

References
[1] Lim Guan Ming, Jatesiktat Prayook, and Ang Wei Tech. Mo-

bilehand: Real-time 3d hand shape and pose estimation from
color image. In 27th International Conference on Neural In-
formation Processing (ICONIP), 2020.

[2] Jianyuan Guo, Kai Han, Han Wu, Chang Xu, Yehui Tang,
Chunjing Xu, and Yunhe Wang. Cmt: Convolutional
neural networks meet vision transformers. arXiv preprint
arXiv:2107.06263, 2021.

[3] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1314–1324, 2019.

[4] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end hu-
man pose and mesh reconstruction with transformers. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021.

[5] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. arXiv preprint arXiv:2103.14030, 2021.

[6] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. arXiv preprint arXiv:2201.03545, 2022.

[7] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proceedings of the European Conference on
Computer Vision, pages 116–131, 2018.

[8] Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz
Dudziak, Hongsheng Li, Georgios Tzimiropoulos, and Brais
Martinez. Edgevits: Competing light-weight cnns on mobile
devices with vision transformers. In European Conference
on Computer Vision, 2022.

[9] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10428–
10436, 2020.



[10] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bod-
ies together. ACM Transactions on Graphics, (Proc. SIG-
GRAPH Asia), 2017.

[11] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[12] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[13] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114, 2019.

[14] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357, 2021.

[15] Pavan Kumar Anasosalu Vasu, James Gabriel, Jeff Zhu, On-
cel Tuzel, and Anurag Ranjan. An improved one millisecond
mobile backbone. arXiv preprint arXiv:2206.04040, 2022.

[16] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10819–10829, 2022.

[17] Daquan Zhou, Qibin Hou, Yunpeng Chen, Jiashi Feng, and
Shuicheng Yan. Rethinking bottleneck structure for efficient
mobile network design. In Proceedings of the European
Conference on Computer Vision (ECCV), 2020.

[18] Yi Zhou, Connelly Barnes, Lu Jingwan, Yang Jimei, and Li
Hao. On the continuity of rotation representations in neural
networks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[19] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan
Russell, Max Argus, and Thomas Brox. Freihand: A dataset
for markerless capture of hand pose and shape from single
rgb images. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 813–822, 2019.


