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1. Additional Ablations

In this supplement, we present additional ablations. We
place quantitative evaluation in Table 2. First we exam-
ine the effects of adjusting the number of parts at training
time, nstart ∈ [12, 24, 36, 48, 60], finding that more parts
does not necessarily translate to better quality due to bias-
variance tradeoff issues (Fig. 10). We also examine how our
Manhattan World losses affect the quality of our primitives,
finding that they help error metrics across the board. We
show in Fig. 9 how the Manhattan World losses help orient
the convexes in manner consistent with scene layout. Fi-
nally, we examine training and refining without our segmen-
tation loss (entropy on the segmentation labels). Quantita-
tively, adding this entropy loss had an approximately neutral
effect on our error metrics. We think that that this is due to
the complexity of our segmentation labels and inability of
our procedure to manage larger numbers of convexes (see
Fig. 11).

We show a 3D mesh of our primitives from multiple
views in Fig. 12. We note that our primitives are represented
in normalized coordinates and we preserve scale/shift coef-
ficients in the X/Y/Z directions to raytrace our primitives
from the original viewpoint and obtain a depth map in the
original camera frame.

In Table 3, we quantitatively compare our method
against the most similar work, [4], using their error met-
ric. Our AUC’s are better across the authors’ reported range
5 − 50cm, but our mean is worse. That would indicate the
presence of a few outlier test scenes that our method per-
formed poorly on.

In Table 4, we evaluate our method, removing one loss
at a time. While the guidance loss had a marginal effect, the
remaining losses meaningfully improved the error metrics
(row C).
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Cfg. ManWorld Entropy Split DepthGT SegGT ninit nused AbsRel↓ RMSE↓ Mean↓ Median↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑ SegAcc ↑
12-NO ✓ ✓ × × × 12 6.5 0.185 0.735 40.052 36.009 0.122 0.303 0.418 0.500
24-NO ✓ ✓ × × × 24 14.4 0.144 0.603 38.235 33.621 0.133 0.335 0.451 0.615
24-NS ✓ ✓ ✓ × × 24 25.9 0.183 0.851 41.512 37.445 0.107 0.286 0.396 0.630
24-NM × ✓ × × × 24 9.5 0.189 0.716 43.003 38.914 0.059 0.223 0.355 0.536
24-NE ✓ × × × × 24 16.1 0.143 0.614 38.311 33.872 0.132 0.330 0.445 0.629
36-NO ✓ ✓ × × × 36 12.6 0.198 0.781 45.546 41.796 0.062 0.201 0.317 0.565
48-NO ✓ ✓ × × × 48 14.6 0.199 0.833 43.963 39.802 0.074 0.267 0.370 0.584
60-NO ✓ ✓ × × × 60 16.9 0.175 0.665 42.387 38.418 0.092 0.269 0.383 0.600
12-O ✓ ✓ × ✓ ✓ 12 6.2 0.153 0.581 40.246 36.475 0.120 0.297 0.416 0.492
24-O ✓ ✓ × ✓ ✓ 24 13.9 0.098 0.514 37.355 32.395 0.144 0.353 0.469 0.618

24-OS ✓ ✓ ✓ ✓ ✓ 24 27.4 0.143 0.819 41.235 36.839 0.111 0.295 0.407 0.631
24-OM × ✓ × ✓ ✓ 24 9.8 0.151 0.580 43.349 39.117 0.057 0.218 0.349 0.568
24-OE ✓ × × ✓ ✓ 24 15.7 0.096 0.520 37.513 32.700 0.143 0.347 0.464 0.630
36-O ✓ ✓ × ✓ ✓ 36 13.0 0.165 0.629 44.189 40.012 0.066 0.212 0.335 0.577
48-O ✓ ✓ × ✓ ✓ 48 14.8 0.159 0.657 44.219 40.025 0.069 0.255 0.362 0.597
60-O ✓ ✓ × ✓ ✓ 60 17.4 0.172 0.652 43.771 39.620 0.089 0.258 0.369 0.605
ref - - - - - - - 0.110 0.357 14.9 7.5 0.622 0.793 0.852 0.719

Table 2. Additional ablations. All configs have pruning and polishing applied at the refinement stage. The eight experiments between
12-NO through 60-NO refer to not having an oracle available during refinement (i.e. the depth and segmentation are inferred by [5, 2]).
The next eight configs have oracles available. The last row ref. shows the reference error of our pretrained depth estimation network, a
recent normal estimation work, and our pretrained segmentation network [5, 1, 2]. By testing the number of starting parts at training time
between [12-NO,24-NO,36-NO,48-NO,60-NO] as well as [12-O,24-O,36-O,48-O,60-O] and then applying refinement, 24 parts performs
best. This is a classic case of bias-variance tradeoff: too few parts biases the decomposition with insufficient capacity; too many parts
results in variance problems. We also evaluate the effects of our Manhattan World losses (24-NO vs. 24-NM) and (24-O vs. 24-OM);
quantitatively, these harm our error metrics across the board. Clearly, indoor scenes have objects oriented in a similar way, and enforcing
that as a loss improves the quality of our decompositions. From there, we examine the effects of no entropy loss (i.e. segmentation loss)
during training nor inference, comparing experiments (24-NO vs. 24-NE) and (24-O vs. 24-OE). The depth and normal error metrics are
nearly identical with or without this loss, and the segmentation accuracy is slightly better WITHOUT the segmentation loss. This was
slightly unexpected, but could be due to the overall noisiness and complexity of the segmentation maps preventing clean segmentation of
objects. We illustrate an example in Fig. 11. Also note how the pruning process removed more parts with the segmentation loss, and it is
generally to be expected that more parts can lead to better segmentation accuracy. Finally, we examine the effects of splitting each convex
into 8 equal volume pieces during refinement before applying refinement/pruning. These are examined quantitatively in configs (24-NO vs.
24-NS) and (24-O vs. 24-OS). Overall, we achieved our best segmentation score with splitting, to be expected due to the increased number
of parts. However, depth and normal error metrics suffer. This is due to optimization difficulties - the optimizer struggled to improve the
fit of so many parts. Qualitatively, the pruning process resulted in holes in the representation as shown in Fig. 9. We think that additional
investigation into splitting and pruning can lead to near-arbitrary resolution convex decompositions, an exciting next step.

AUC@50cm AUC@20cm AUC@10cm AUC@5cm meancm mediancm

Ours - RGB 77.3 47.6 26.8 13.9 40.2 26.2
Kluger et al. 57.0 33.1 18.9 10.0 34.5 -
Ours - Depth 86.9 72.5 56.5 38.2 26.6 10.1
Kluger et al. 77.2 62.7 49.1 34.3 20.8 -

Table 3. Comparison with previous work [4] - Occlusion-Aware distance metric reported in all columns. Our AUC’s are better, but mean is
worse; medians indicate we suffer because of outliers.
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Figure 9. Qualitative ablation study on the effects of splitting during refinement and our Manhattan World losses. Results shown with
and without ground truth depth and segmentation during refinement. Corresponding quantitative evaluation in Table 2. Convex splitting
Applying convex splitting during the refinement step increases the granularity of our representation; however our optimization procedure
struggles to improve the fit and convex pruning results in holes (comparing 24-NS against 24-NO and 24-OS against 24-O). Manhattan
world losses Removing the Manhattan World losses during training and refinement results in qualitatively cluttered representations. The
depth is approximately correct, but the convexes are not organized in a manner representing the scene (e.g. maintaining parallel lines where
possible). Our decompositions are quantitatively and qualitatively worse with the Manhattan World losses removed (comparing 24-NM
against 24-NO and 24-OM against 24-O).
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Figure 10. Ablation study on number of parts at training time. We examine training with nparts ∈ [12, 24, 36, 48, 60] on a random NYUv2
test image. We refine without GT depth/seg. The optimal number of parts is this experiment was 24. Notice how less than this value, we
run into bias issues, and above this value, we see variance problems. Quantitative results shown in Table 2.



Figure 11. Four example ground truth segmentation maps of NYUv2. The entropy loss encouraging our primitive decomposition to roughly
obey segmentation boundaries quantitatively showed neutral results on this dataset - though it helped in very simple toy models we tried.
Observe how the segmentations are quite cluttered due to occlusions or objects on top of one another. Say - posters on the fridge/cabinet
or objects on a desk. The signal to the entropy loss can confuse the part decomposition in areas we want just one primitive representing
that area. An obvious approach to dealing with scene complexity is more primitives. However, training with more primitives resulted in
significant variance issues and a drop in quality beyond 24 as Table 2 shows. Splitting the parts during refinement followed by polishing
also failed to yield helpful results due to optimization difficulty. Finally, one could tackle this from the perspective of data: we could
pre-process the segmentation with the intent to simplify them (similar to [3]).

Figure 12. Input image, front of primitives, right side, left side.



Cfg. nused AbsRel↓ RMSE↓ Mean↓ Median↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑ SegAcc ↑
no-unique 16.7 0.157 0.695 38.092 34.501 0.153 0.328 0.437 0.613

no-guidance 14.4 0.145 0.624 37.422 33.471 0.149 0.339 0.453 0.611
overlap-10 17.3 0.148 0.646 38.567 34.711 0.149 0.325 0.435 0.630
no-overlap 4.3 0.179 0.673 38.457 34.431 0.107 0.300 0.431 0.466
no-volume 16.2 0.144 0.618 37.462 33.292 0.141 0.338 0.454 0.623

no-local 1.0 0.499 1.856 87.673 82.785 0.006 0.019 0.034 0.212
C 14.4 0.144 0.603 38.235 33.621 0.133 0.335 0.451 0.615

Table 4. Ablations with one CVXnet loss removed at a time. All are non-oracle. C is our final non-oracle model (Table 1 main text). Depth
metrics worse without unique param. loss (eqn. 5 of CVXnet). Guidance loss (eqn. 6) has an approx. neutral effect. Removing the overlap
loss (decomp. loss eqn. 4 in CVXnet) harms quality; scaling it up to 10, beyond the default 0.1, slightly hurts error metrics, likely because
convexes need to move freely during the training process. It remains future work to completely eliminate overlaps while preserving quality.
Removing the volume loss has an approx. neutral effect on the error metrics though parsimony is harmed. The localization loss (eqn. 7) is
critical to the method.


