
— Supplementary Material —
P1AC: Revisiting Absolute Pose From a Single Affine Correspondence

Jonathan Ventura1 Zuzana Kukelova2 Torsten Sattler3 Dániel Baráth4

1 Department of Computer Science & Software Engineering, Cal Poly
2 Visual Recognition Group, Faculty of Electrical Engineering, Czech Technical University in Prague

3 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague
4 Department of Computer Science, ETH Zürich

In this supplementary material, we present additional experiments to support the claims in the main paper, explain and
analyze alternative solver formulations, and present more detailed explanations of some aspects of the main paper. Section
1 presents extra experimental results on noise sensitivity. Section 2 evaluates an alternative application of the IPPE method.
Section 3 analyzes degenerate cases for the P1AC solver. Section 4 introduces a fast P1AC solution using an approximate
rotation representation which is only valid for small rotations. Section 5 details an alternate P1AC solution using the 3 × 3
rotation matrix representation.

1. Noise sensitivity tests

0 2 4 6 8 10
Std. dev. of point noise (px)

10

8

6

4

2

0

St
d.
 d
ev

. o
f a

ffi
ne

 n
oi
se

 (%
)

DPR rotation error (deg)

2

4

6

8

10

0 2 4 6 8 10
Std. dev. of point noise (px)

10

8

6

4

2

0

St
d.
 d
ev

. o
f n

or
m
al
 n
oi
se

 (d
eg

)

DPR rotation error (deg)

2

4

6

8

10

0 2 4 6 8 10
Std. dev. of point noise (px)

10

8

6

4

2

0

St
d.
 d
ev

. o
f a

ffi
ne

 n
oi
se

 (%
)

IPPE rotation error (deg)

10

15

20

25

30

35

0 2 4 6 8 10
Std. dev. of point noise (px)

10

8

6

4

2

0

St
d.
 d
ev

. o
f n

or
m
al
 n
oi
se

 (d
eg

)

IPPE rotation error (deg)

10

15

20

25

30

35

Figure 1: Analysis of error from DPR and IPPE methods with respect to various types and levels of noise.

Figure 1 plots the rotation error versus noise for IPPE and DPR. The results for DPR are similar to P1AC, whereas IPPE’s

Recall (0.1m/1◦) ↑ Rec. (0.2m/1◦) ↑
Dataset P1AC IPPE (4PC) P1AC IPPE (4PC)
Cambridge Landmarks 65.08 46.51 80.65 58.92

Table 1: Comparison of P1AC and IPPE (4PC) results on Cambridge Landmarks.

Recall (0.25m/2◦) ↑ Recall (0.5m/5◦) ↑ Recall (5m/10◦) ↑
Dataset P1AC IPPE (4PC) P1AC IPPE (4PC) P1AC IPPE (4PC)
Aachen Day 62.0 60.1 84.6 81.3 95.9 92.6
Aachen Night 51.3 38.2 66.0 49.2 82.2 60.2

Table 2: Comparison of P1AC and IPPE (4PC) results on Aachen Day-Night.

error is far higher (note the color bar range).

2. IPPE with four point correspondences
We conducted extra tests of the IPPE solver on real data using four PCs (rather than a single AC with added virtual corre-

spondences) within the GC-RANSAC framework, in a manner consistent with our other experiments. Given the requirement
of IPPE for coplanar points, we implemented the NAPSAC sampler [5] within GC-RANSAC to select proximate points in
the samples. As shown in Tables 1 and 2, the proposed P1AC substantially outperforms IPPE (4PC) on all tested datasets.

3. Degeneracies
As mentioned in Section 4.1 of the main paper, we investigated several specific problem configurations to search for

situations where our P1AC solver might produce inaccurate results.

3.1. Weak perspective

0 1 2 3 4 5 6
Log distance

−12

−10

−8

−6

−4

−2

0
Log rotation error

P1AC
P3P

0 1 2 3 4 5 6
Log distance

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0
Log position error

P1AC
P3P

Figure 2: Plot of rotation and position error of P1AC and P3P over increasing distance of the query camera from the point.
The error of both solvers increases with distance, although the error of P3P increases at a faster rate than P1AC.

We investigated the change in performance as the configuration approaches weak perspective, where the differences in
depths in the object / scene are much smaller than the distance to the object / scene. To test this scenario, we generated
random problems in the following manner. We select a random rotation for the object plane and a center point for the plane
selected from a 3D normal distribution. Two co-planar points are placed at a distance of 0.1 from the center point along the
principal axes of the plane. A random reference camera is selected with unit distance from the origin, and a query camera

at the chosen distance from the origin. Both the reference and query camera look at a random target point sampled from
[−0.5 0.5]3. No noise was added to the observations in this experiment.

As the distance of the query camera increases, the projected size of the planar object decreases, and the configuration
approaches the weak perspective case. Figure 2 plots the rotation and position error of P1AC and P3P as the distance of
the query camera increases. The error of both P1AC and P3P increases with query camera distance, with the error of P3P
increasing more quickly than P1AC.

3.2. Near-identity rotation

0.0 0.1 0.2 0.3 0.4 0.5
Rotation (deg)

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5
Log rot. err.

PoseLib 3Q3
GAPS 3Q3
Original 3Q3
Lineari ed

0.0 0.1 0.2 0.3 0.4 0.5
Rotation (deg)

−14

−12

−10

−8

−6

−4

−2

0

Log po . err.
Po eLib 3Q3
GAPS 3Q3
Original 3Q3
Linearized

Figure 3: Plot of rotation and position error of various solvers when the ground truth rotation solution has small magnitude
(≤ 0.5◦). The PoseLib 3Q3 implementation is numerically unstable for very small rotations (< 0.05◦).

When the rotation is equal to or close to identity, we found that the performance of our P1AC solver depends on the
implementation of 3Q3 solver used. When using the 3Q3 implementation from PoseLib [2], the solver often produces zero
solutions or inaccurate solutions. This is likely because the last column of the coefficient matrix, after Gaussian elimination,
contains extremely small numbers. When using the original 3Q3 implementation provided by the authors [1], the accuracy
remains stable.

In the specific case where the rotation is identity and the translation is zero, both the PoseLib 3Q3 implementation and the
original 3Q3 implementation often fail to produce a solution. However, we found that a 3Q3 solution produced by the GAPS
automatic generator [4] avoids all instability with near-identity rotations, even in the case of zero translation. Using the 3Q3
solver produced by GAPS, the P1AC solver has an average timing of 15 µs.

We see two possible solutions to the issue encountered with the PoseLib 3Q3 and near-identity rotations, if the P1AC
solver is to be used in a scenario where the rotation is expected to be close to identity. One option is to use the GAPS 3Q3
solver, at the cost of a slightly slower minimal solver. A faster option is to append the solution from a linearized rotation
solver (described below) to the list of PoseLib 3Q3 solutions.

Figure 3 plots the average rotation error for the various solvers over a range of rotation magnitude settings. For each
rotation magnitude setting we generated 10,000 random problems.

4. Linearized rotation solution
When the rotation is close to identity, we can use a small-angle approximation to arrive at a linear solution to the P1AC

problem. Let r be the SO(3) representation of the rotation R. We linearize R using the first order Taylor expansion R ≈
I3×3 + [r]×. Now the P1AC equations become six linear equation in six unknowns r, t and are easily solved.

The solver is extremely fast, with an average timing of 0.366 µs.

5. Rotation matrix solution
The P1AC formulation presented in the main paper is based on the Cayley parameterization of the rotation matrix. As

mentioned in the main paper, this parameterization introduces a degeneracy for rotations of exactly 180◦. Even though this

degeneracy is not a problem in practice, we will present here a formulation of the P1AC problem and a solution that does not
suffer from this degeneracy.

If we parameterize the rotation directly as a 3 × 3 matrix, then we have 12 parameters in P = [R | t]. We can write the
six P1AC equations as a matrix-vector multiply:

MP̄ = 0. (1)

where P̄) denotes the matrix P rearranged into a vector.
Let B be the 12 × 6 nullspace of M. We compute the nullspace of M using singular value decomposition (SVD). Any

solution, up to scale, for P̄ has the form
P̄ = Bb, (2)

where b is a vector of six coefficients for the basis vectors in B. Our goal is to find solutions for b that make the rotation
matrix orthogonal.

We follow the solution procedure described by Ventura et al. [6]. Assuming b6 ̸= 0, we remove one parameter and simplify
the solution by fixing b6 = 1. Let r1, r2, r3 be the rows of R and c1, c2, c3 be the columns. The following constraints ensure
that R is orthogonal, up to scale:

||r1||2 − ||r2||2 = 0, ||r1||2 − ||r3||2 = 0,

||c1||2 − ||c2||2 = 0, ||c1||2 − ||c3||2 = 0,

r1 · r2 = 0, r1 · r3 = 0, r2 · r3 = 0,

c1 · c2 = 0, c1 · c3 = 0, c2 · c3 = 0. (3)

Plugging in equation 2 to these constraints results in a system of ten quadratic equations in twenty-one monomials with
variables b1, . . . , b5. After extracting the roots of this system of equations, for each solution we divide p̃ by ||c1|| and negate
p̃ if necessary to ensure that det(R) = 1.

This system has eight solutions and can be solved using the action matrix method and an automatic solver generator [3].
The resulting solver involves elimination of a 47× 55 template matrix and eigendecomposition of an 8× 8 matrix.

The solver is much slower than the 3Q3 solver, having an average timing of 27 µs. It does not exhibit any instability with
near-identity rotations.

In contrast to [6], we discovered that the system of equations 3 can be further simplified by eliminating one unknown, e.g.,
b1. This can be done by rewriting the ten equations (3) in a matrix form Cv = 0, where C is a 10 × 21 coefficient matrix,
and v is a vector of 21 monomials ordered using the lexicographic ordering. After eliminating the matrix C, six monomials
containing b1 can be expressed as quadratic polynomials in b2, . . . , b5. In this way, b1 can be eliminated from the original
equations. Moreover, new equations that express relationships between different monomials can be added to the original
equations, e.g. if b1 = p1(b2, . . . , b5) and b1b2 = p2(b2, . . . , b5), where p1 and p2 are polynomials in b2, . . . , b5, extracted
from the eliminated matrix C, then a new equation that can be added to the original equations has the form p1b2 = p2. In
this way, a new system of polynomials equations in four unknowns can be generated. This system can be solved using the
automatic generator [3] and results in a solver that performs elimination of a 29×37 template matrix and eigendecomposition
of an 8× 8 matrix. Although this solution path is faster than the 47× 55 path, we found that it is less numerically stable.

References
[1] Zuzana Kukelova, Jan Heller, and Andrew Fitzgibbon. Efficient intersection of three quadrics and applications in computer vision. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1799–1808, 2016. 3
[2] Viktor Larsson. PoseLib - Minimal Solvers for Camera Pose Estimation. https://github.com/vlarsson/PoseLib, 2020.

3
[3] Viktor Larsson, Kalle Astrom, and Magnus Oskarsson. Efficient solvers for minimal problems by syzygy-based reduction. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 820–829, 2017. 4
[4] Bo Li and Viktor Larsson. GAPS: Generator for automatic polynomial solvers. arXiv preprint arXiv:2004.11765, 2020. 3
[5] Philip Hilaire Torr, Slawomir J Nasuto, and John Mark Bishop. NAPSAC: High noise, high dimensional robust estimation-it’s in the

bag. In British Machine Vision Conference (BMVC), volume 2, page 3, 2002. 2
[6] Jonathan Ventura, Clemens Arth, Gerhard Reitmayr, and Dieter Schmalstieg. A minimal solution to the generalized pose-and-scale

problem. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 422–429, 2014. 4

https://github.com/vlarsson/PoseLib

