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1. Implementation Details

In this section, we provide specific details about the
implementation of our method. We will further release all
code and image sets used for evaluations to facilitate further
research and comparisons.
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Figure 1. Object re-scaling procedure.

1.1. Image Preprocessing

As stated in the paper, we use a pre-trained U?-Net
salient object detector [9] to extract the scene’s salient ob-
ject(s). To receive a binary map, we threshold the resulting
map from U2-Net such that pixels with a value smaller than
0.5 are classified as background, and the remaining pixels
are classified as salient objects. We then use this mask as
an input to a pre-trained LaMa [ | 5] inpainting model to re-
cover the missing regions in the background image.

Object Scaling In the case where the saliency detection
process detected only one object, and this object fills less
than 70% of the image size, we perform an additional pre-
processing step to increase the size of the object before
sketching. This assists in sketching key features of the ob-
ject when using a large number of strokes. Specifically, we
first take the masked object and compute its bounding box.
We then shift the masked object to the center of the image
and resize the object such that it covers & 70% of the image.
We apply the sketching procedure on the scaled object and
then resize and shift the resulting sketch back to the original
location in the input image. Note that since our sketches are
given in vector representation, it is possible to re-scale and
shift them without changing their resolution. This process
is illustrated in Figure 1.



1.2. MLP Training

Hyper-parameters In all experiments, we set the number
of strokes to n = 64 in the first phase of sketching and train
MLP,,, for 2,000 iterations. For generating the series of
simplified sketches (Section 3.4 in the main paper), we per-
form 8 iterative steps. As discussed in Section 3.4, for each
fidelity level k, we define a separate function f; for defin-
ing the set of ratios used in L,.44;,. Along with this function,
we define a separate step size for sampling the function fj.
For simplifying the background sketches, we set this step
size to be {0.35,0.45,0.5,0.9} for layers {2,7,8,11}, re-
spectively. For simplifying the object sketches, we set the
step sizes to be {0.45,0.4,0.5,0.9}. Each simplification
step is obtained by training M L Py, and M L P, for 500
iterations. We employ the Adam optimizer with a constant
learning rate of 1le—4 for training both MLP networks. The
input to M L Py;,y,,, is set to be a random-valued vector of
dimension n.

Augmentations As also done in Vinker et al. [16], we ap-
ply random affine augmentations (i.e. random perspective
and random cropping transformations) to both the input im-
age and generated sketch before passing them as inputs to
the CLIP model for computing the loss.

GradNorm We train M L Pi;,,, and M LP},. with three
different losses simultaneously in order to achieve our vi-
sual simplifications. As these losses compete with each
other, training has the potential to be highly unstable. For
example, when training with multiple losses, the gradients
of one loss may be stronger than the other, resulting in the
need to weigh the losses accordingly. To help achieve a
more stable training process and to ensure that each loss
contributes equally to the optimization process, we use
GradNorm [3], which automatically balances the training
process by dynamically adjusting the gradient magnitudes.
This balancing is achieved by weighing the losses inversely
proportional to their contribution to the overall gradient.

1.3. Matrix Composition

As stated in the main paper, we separate the scene into
two regions (based on their saliency map) and apply the
sketching scheme to both independently, we then combine
the resulting sketches to form the final matrix. To com-
bine the foreground and background we simply aggregate
the corresponding strokes at a given level of fidelity and
simplicity. Note that we also export the mask used to sep-
arate them, if the user wish to locate it behind the object to
avoid the collision of strokes. We also export the separate
matrices, to allow users to combine sketches from different
levels of abstraction as a post process.

2. Additional Quantitative Analysis

In this section, we provide additional details, examples,
and results regarding the quantitative evaluations presented
in the paper. First, in Figure 2 we present example inputs
and representative generated sketches for each of our five
scene categories used for evaluations.

2.1. Sketch Recognizability

To compute our recognizability metrics, we perform
zero-shot classification using a pre-trained ViT-B/16 [4]
CLIP model. Observe this model is different than the ViT-
B/32 model used to generate sketches, ensuring a more fair
evaluation of our sketches. When performing the zero-
shot classification, we follow the evaluation setup used in
CLIP [10] and apply 80 prompt templates when defining our
200 classes to CLIP’s text encoder. This includes prompts
of the form: “a rendering of a {}”, “a drawing of a {}, and
“a sketch of a {}”. We then compute the cosine similar-
ity between all text embeddings and the embedding corre-
sponding to either our input image or generated sketches.

In Figure 4, we present example zero-shot classification
results obtained on various input images and sketches across
our five scene categories.

2.2. Number of Strokes by Simplicity Level

We examine our method’s ability to generate sketches at
varying levels of simplicity. For that purpose, we measure
the final number of strokes used to generate the sketches.
We extract this information from the generated sketch SVGs
across all 560 sketches. We present the results in Fig-
ure 3, split between the different fidelity levels (indicated
by different colors) and simplicity levels (shown along the
x-axis). As can be seen, the number of strokes decreases as
we move along the simplicity axis, across all fidelity levels.

In Figure 5, we present the same results but split between
the different scene categories and split between composing
the foreground and background sketches. As can be seen,
the resulting functions for the different fidelity levels follow
an exponential relation as we strengthen the simplification
level.
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Figure 2. Example images and representative sketches used for our quantitative evaluations.
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Figure 3. Examining the number of strokes used to compose the
sketch across each fidelity and simplification level. Results are av-
eraged across all images across all scene categories. In the supple-
mentary materials, we additionally illustrate the number of strokes
split between foreground and background and between the five
scene categories.
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Image Top S: person, plain, skyscraper, bridge, tower
Sketch 1 Top 5: person, laptop, skyscraper, pencil, glasses
Sketch 2 Top 5: skyscraper, person, tower, statue, hair drier

Urban

Image Top 5: tower, statue, plain, castle, toilet
Sketch 1 Top 5: tower, house, statue, toilet, oven
Sketch 2 Top 5: house, tower, castle, bridge, lighthouse
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Image Top 5: house, lighthouse, mountain, sea, plain
Sketch 1 Top 5: house, lighthouse, mountain, plain, kite
Sketch 2 Top 5: mountain, house, plain, snowboard, castle

Nature

Indoor

Image Top 5: bed, couch, table, vase, chair
Sketch 1 Top 5: laptop, couch, table, remote, chair
Sketch 2 Top S: plant, couch, vase, kettle, bowl

S
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Image Top 5: bird, bee, flower, butterfly, camera
Sketch 1 Top 5: bird, bee, mouse, rabbit, butterfly
Sketch 2 Top 5: bee, butterfly, flower, bird, plant
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Figure 4. Examples of CLIP zero-shot class predictions on various
input images and representative sketches of varying abstractions.
These predictions are then used to compute a recognizability met-
ric for each scene category across different levels of abstractions
(see Section 4.3 in the main paper).

3. Ablation Study: General Design Choices
3.1. ViT vs. ResNet

In Figure 6, we demonstrate the scene sketching results
obtained with a ResNet101-based CLIP compared to those
obtained with the ViT-based CLIP model employed in this
work. When computing Loprp using a single layer of
ResNet (i.e. layer 2, 3, or 4), we are unable to capture the
input scene, indicating that a combination of the layers must
be used for capturing the more global details of a complete
scene. However, even when computing Lo 7p using mul-
tiple ResNet layers (as was done in CLIPasso), the network
still struggles in capturing the details of the scene. For ex-
ample, in row 3, although we are able to roughly capture
the outline of the bull’s head and horns, the network is un-
able to capture the bull’s body and scene background. In
contrast, when replacing the ResNet model with the more
powerful ViT model, we are able to capture both the scene
foreground and background, even when using a single layer
for computing the loss. This naturally allows us to control
the level of fidelity of the generated sketch by simply alter-
ing the single ViT layer that is used for computing Lcor1p.

3.2. Foreground-Background Separation

In Section 3.4 of the main paper, we introduced our scene
decomposition technique where the foreground and back-
ground components of the input are sketched separately and
then merged. In Figure 7 we provide additional sketching
results obtained with and without the scene decomposition
for both abstraction axes. At the top, we present the result-
ing sketches along the fidelity axis. Observe how the house
in the leftmost sketch in the first row appears to disappear
within the entire scene. Furthermore, note the artifacts that
appear in the face of the dog as the abstraction increases. In
contrast, by explicitly separating the foreground and back-
ground, we can apply additional constraints over the fore-
ground sketches to help mitigate unwanted artifacts. As a
result, we are able to better maintain the correct structure of
both the house and dog in the provided examples.

At the bottom of Figure 7 we show the resulting sketches
along the simplification axis. Note how the house in the first
row almost disappears completely, and that there are not
enough strokes to depict the mountains in the background.
By considering the entire scene as a whole, the model has
no explicit control over how to balance the level of details
placed between the object and the background. As a result,
more strokes are typically used to sketch the background,
which consumes a larger portion of the entire image (and
therefore leads to a larger reduction in Lo 1p).
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Figure 5. Examining the number of strokes used to compose the sketch across each fidelity and simplification level, split between the

different scene categories.
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Figure 6. Ablation study on using ResNet-CLIP and ViT-CLIP for guiding the training process. For both variants, we generate the sketches
for the entire scene together (i.e. no scene decomposition is performed) and set the number of strokes to 128. In addition to evaluating
ResNet using a single layer for computing Lc 1.1 p, we additionally show results obtained when multiple ResNet layers are used to compute
Lcrrp (marked as “ResNet Multi-Layer”). For this variant, we follow CLIPasso [16] as set the layer weights to 0,0, 1, 1, 0 for layers ¢;
to U5, respectively. In addition, we use the output of the fully connected layer and set its weight to 0.1 in the loss computation.

4. Ablation Study: Simplicity Axis

In this section, we analyze the design choices for the
simplification training scheme and corresponding loss ob-
jectives.

4.1. Explicitly Defining the Number of Strokes

We begin by analyzing our simplification scheme as a
whole. That is, are we able to achieve a smooth simplifi-
cation of an input scene by simply varying the number of
strokes used to sketch the scene? In Figure 8 we provide re-
sults comparing our implicit simplification scheme (on the
right) with results obtained by sketching the scene using a
varying number of strokes defined in advance (on the left).
For the latter results, we use 64,32, 16, and 8 strokes for
sketching. For each input, we present the simplifications
achieved at the last level of fidelity (i.e. using layer 11 of
CLIP-ViT for training).

Knowing in advance the number of strokes needed to
achieve a specific level of abstraction is often challenging
and varies between different inputs. For example, consider
the image in the first row, containing a simpler scene of a
house. When using only 16 strokes for sketching this im-
age, we are able to capture the components of the scene
such as the existence of the house in the center, its roof, and
its door. However, when sketching the more complex ur-

ban scene in the third row, using 16 strokes may struggle
to capture the general structure of the buildings or may not
converge at all. By learning how to simplify each sketch,
our simplification scheme is able to adjust the number of
strokes needed to more faithfully sketch a given image at
various levels of simplification, while adapting to the com-
plexity of the input scene in the learning process.

Moreover, we observe that when defining the number of
strokes explicitly, we may fail to get a smooth simplification
of the initial sketch since each sketch is generated indepen-
dently and may converge to a different local minimum. For
example, in the second row on the left, the sketches do not
appear to be simplified versions of each previous step (e.g.
between the second and third steps), but rather new sketches
of the input scene with an increased level of visual simpli-
fication. In contrast, each of our simplification results is
initialized with the previous result, resulting in a smoother
transition between each image.
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Figure 8. Ablation results of explicitly defining the number of strokes (left) compared to using our implicit simplification scheme (right).
The presented sketches of all three input images are of the last fidelity level (obtained using layer 11 of CLIP-ViT).
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4.2. Replace the Ratio Loss With a Target Number
of Strokes

We note in the main paper that achieving gradual vi-
sual simplification requires balancing between Lpqrse and
Lcprp. In our method, we do so by defining a set of factors
used to define a balance between the relative strengths of the
losses. This section examines another possible approach:
encouraging the training process to achieve a certain num-
ber of strokes during training and reducing this number at
each level. As opposed to Section 4.1 where we restrict the
number of strokes completely, here we include the target
number of strokes as another objective in the training pro-
cess, thus allowing deviance from this number.

To implement this approach we simply redefine L0
as follows:

Eratio =

||£sparse - ntarget”v (D

where 144, get 18 the desired number of strokes. Specifically,
we define four levels of abstraction using 64, 32, 16, and
8 strokes. We then normalize the number of strokes to be
between 0 and 1 and define nq4rges as {1,0.5,0.25,0.125}
for each level, respectively.

In Figure 9 we show the result of this experiment. As

Ntarget|| guided by a desired number of strokes

can be seen on the left, such an approach does not achieve
the desired simplification. As can be seen, on the left, the
levels of abstraction are less gradual than on the right and do
not reach full abstraction. This approach also relies on an
arbitrary fixed number of strokes per abstraction level for all
images, as opposed to allowing the ratio itself to implicitly
define it in a content-dependent manner.

4.3. Fine-tuning MLP-loc During Simplification

As described in Section 3.3 of the main paper, when
performing the simplification of a given sketch by training
ML Py, we continue fine-tuning M LP,.. Doing so is
important since by training M LP,,., we allow to slightly
adjust the locations of strokes in the canvas, which helps en-
courage the simplified sketch to resemble the original input
image. In Figure 10, we show sketch simplifications across
various inputs obtained with and without the fine-tuning of
MLP,.

When M L Py, is held fixed, the simplification process is
equivalent to simply selecting a subset of strokes to remove
at each step. This approach will result in the appearance of
visual simplification, but may not be sufficient to maintain
the semantics of the scene. For example, in the last sim-



plification step of the first example, the mountains in the
background have disappeared, as have the buildings in the
third example. In addition, the house in the second image
can no longer be identified. On the other hand, our results,
obtained with the fine-tuning of M LP,,., produce the de-
sired visual simplification, while still preserving the same
semantics of the input scenes.
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Figure 10. Ablation of fine-tuning M LPF;,. when training

M L Pgimyp during the simplification process. The sketches pre-
sented here are obtained using layer 11 of the CLIP-ViT model.

4.4. Defining the Function f-k as an Exponential

In Section 3.3 of the main paper, we describe the pro-
cess of selecting the set of factors used to achieve a gradual
simplification of a given sketch. To do so, we defined a
function fj, for each fidelity level & defining the balance be-
tween Loprp and Lgparsc. We find that an f;, that models
in an exponential relationship between Lorrp and Lgpgrse
achieves a simplification that is perceived smooth.

In this section, we demonstrate this effect by visually
demonstrating the gradual simplification we achieve when
choosing an fj, that gives a linear relation between Lo rp
and Lparse. To do so, we define the linear fj, such that the
sampled set of factors {r},..ri"} represent a constant step
size by encouraging the removal of 8 strokes in each step.

In Figure 11 we present the results of this alternative

setup. For each set of generated sketches, we additionally
present two graphs: (1) the resulting Lpqsc as a function
of Lorrp (left), and (2) the final number of strokes as a
function of the simplification step (right). Each point in the
graphs corresponds to a single sketch with the color of the
points indicating the location of the corresponding sketch
along the simplification axis. That is, O (or dark blue) indi-
cates the leftmost, non-simplified sketch while 7 (or yellow)
indicates the rightmost sketch with the highest level of sim-
plification. Recall, as discussed in the main paper, the left
graph should ideally depict an exponential relation between
the two loss objectives in order for the simplification to ap-
pear smooth.

The results presented on the left side of Figure 11 show
the sketches and corresponding graphs produced when us-
ing a linear f; as defined above. The results on the right-
hand side of the Figure show sketches obtained with our
method when using the exponential f;, as described in the
main paper. As can be seen, the sketches in the linear alter-
native (left) remain too detailed at the initial abstraction lev-
els and do not convey the smooth and gradual change per-
ceptually as is present with the exponential function (right).
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Figure 11. Ablation of the defining an exponential f; when performing an iterative simplification of the sketch. On the right-hand side,

we define a linear relation between the two loss objectives. On the left

side, we show sketch results obtained when defining an exponential

relation between Lcorrp and Lsparse. For each set of simplified sketches, we additionally present two graphs depicting (1) the relation
between the two loss objectives at each simplification step (left graph) and (2) the number of strokes used to compose the sketch (right

graph).
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Figure 13. Ablation study on applying the same step size for sampling each function fj during simplification. On the left, we apply the same
step size across all fidelity levels, resulting in non-smooth and non-uniform simplifications between the different fidelity levels. On the
right, we show our simplification results obtained by adjusting the step size for each level. As shown, we achieve smoother simplifications
that are more consistent between the four different levels.

4.5. Defining a Different Set of Factors for Each

of

Layer

In Section 3.3 of the main paper, we describe the process
selecting the set of factors {r{, ..., "} used to achieve a

gradual simplification of a given sketch. In this section, we
validate the use of different sets of factors for each fidelity
level k. Note that, as stated in the main paper, the set of fac-
tors -, determine the balance between Loprp and Lparses
which directly determines the level of visual simplification.

We show on the left-hand side of Figure 12 the simpli-

fied sketches obtained for different levels & of fidelity when

using the same set of factors.

Specifically, we apply the

set of factors used for layer {g to the remaining ViT layers.
As can be seen, the perceived level of visual simplification
is not uniform between different layers: the simplification
achieved for layer ¢1; is too weak with very little perceived

change realized across all steps.

In contrast, for layer ¢

the simplification is too strong with the background quickly
“disappearing” as we move to the right. On the right-hand
side of Figure 12, we present the results obtained with our
method, where we fit a dedicated set of factors for each fi-
delity level k. As can be seen, the perceived level of ab-
straction among the different fidelity levels is more uniform
and smooth.

4.6. Defining a Different Sampling Step for Each f-k

After defining the function f; for each fidelity level k,

we use a different step size for sampling this function for
each k. We wish to achieve a similar appearance of simpli-
fication across different fidelity levels, and we find that in
order to do so, using a different step size for sampling f, is
crucial.

In Figure 13, on the left, we demonstrate results obtained

11

when using the same step size for our four fidelity levels (i.e.
ViT layers {5, {7, lg, ¢11). As can be seen, for layers {5 and
£7 the gradual simplification is not smooth and a noticeable
jump in the strength of the abstraction can be seen between
the second and third sketches. Furthermore, for layer /7,
the change in step size caused the networks to converge to
a noisy solution. Observe how the second sketch does not
resemble a simplification of the previous one.

In contrast, the results on the right are obtained using
the proposed approach of selecting different step sizes for
each fidelity level k. As shown, the sketches do not suffer
from the perceived artifacts present on the left. Moreover,
the simplification results are also smooth and uniform in
appearance between the different layers.

5. Ablation Study: Fidelity Axis

Finally, in this section, we perform various ablation stud-
ies to validate the design choices made with respect to our
fidelity abstraction axis.

5.1. Using 1-4 for Object Sketching

When decomposing the scene and sketching for the fore-
ground image, we additionally compute Lo, rp over layer
£4 of ViT. We found that doing so may help in preserving the
geometry of more complex subjects, as illustrated in Fig-
ure 15. This is most noticeable in finer details such as in the
facial details of the old man and the dog or the body shape
of the panda, for example.

5.2. Using Other ViT Layers for Training

In order to obtain different levels of fidelity, we train
M LP,,. guided by different layers of the CLIP-ViT model
for computing L7 p. Our model is based on the ViT-B/32
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Figure 14. Ablation study on using different ViT layers for computing Lo 1.7 p for generating sketches at different levels of fidelity.
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Figure 15. Ablation results for object sketching when additionally
using layer ¢4 when computing Lcrrp for object sketching.
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architecture that includes 11 intermediate layers. Our main
paper presents the results of applying our training scheme to
a subset of four layers: 2, 7, 8, and 11. This subset of lay-
ers represents a range of possible fidelity levels that can be
achieved by our method. While we focus on presenting re-
sults using only these four layers, our method can naturally
generate additional levels of fidelity by using the remaining
intermediate layers. We present the results of using addi-
tional layers in Figure 14.
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6. Additional Results

We begin with additional results generated by our
method. In Figures 16 to 20 we provide 4 x 4 abstraction
matrices for various scene images. In addition, we present
additional examples of the added control provided by the
separation technique in Figure 21. This includes: (1) edit-
ing the style of strokes using Adobe Illustrator and (2) com-
bining the foreground and background sketches and varying
levels of abstractions to achieve various artistic effects.
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Figure 17. The 4 x 4 matrix of sketches produced by our method. Columns from left to right illustrate the change in fidelity, from precise
to loose, and rows from top to bottom illustrate the visual simplification.
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Figure 21. Additional control. For each image, we combine foreground and background sketches from different levels of abstraction, and
edit the style of strokes using Adobe Illustrator. This illustrates the power of our method in providing various options for the user to edit
the resulted sketches.
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Textual Inversion
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Figure 22. Comparison to various diffusion model-based tech-
niques. At the top, we compare our sketch results to those obtained
using Stable Diffusion [13] image-to-image technique guided by
the text prompt “A black and white sketch image”. At the bottom,
we compare with Textual Inversion [5] by learning new tokens rep-
resenting a detailed sketch (top row) and abstract sketch (bottom)
row. As shown, both approaches struggle in either capturing the
desired sketch style or input subject.

7. Additional Comparisons
7.1. Diffusion Models

Recent advancements in diffusion models [6] have
demonstrated an unprecedented ability to generate amaz-
ing imagery guided by a target text prompt or image [13,

, 11,8, 18, 14]. In this section, we explore whether such
models can be leveraged to generate abstract sketches of a
given scene. We begin by exploring the recent Stable Dif-
fusion model [13]. Given an input image, we perform a
text-guided image-to-image translation of the input using
text prompts such as: “A black and white sketch image”
and “A black and white single line abstract sketch.” Results
are illustrated in Figure 22. As can be seen in the top row,
Stable Diffusion struggles in capturing the sketch style even
when guiding the denoising process with keywords such as
“A black and white sketch”. We do note that better results
may be achieved with heavy prompt engineering or tricks
such as prompt re-weighting methods [1]. However, doing
so would require heavy manual overhead for each input im-
age.

Another approach to assist in better capturing the desired
sketch style would be to fine-tune the entire diffusion model
on a collection of sketch images. However, this would re-

19

quire collecting a few hundred or thousands of images with
matching captions and training a separate model for each
desired style and level of abstraction.

As another diffusion-based approach, we consider the re-
cent Textual Inversion (TI) technique from Gal et al. [5].
Given a few images (e.g. 5) of the desired style (e.g. sketch),
TI can be used to learn a new “word” representing the style.
Users can then use a pre-trained text-to-image model such
as the recent Latent Diffusion Model [13] to generate im-
ages of the learned style. For example, users can generate
a sketch image of a house using the prompt “A photo of a
house in the style of S,” where S, represents our learned
sketch style.

To evaluate TT’s ability to generate sketch images sup-
ported by our method, we collect 10 sketches generated by
our method — 5 detailed and 5 abstract — and learn a new
token representing each of the sketch styles. In a similar
fashion, we can learn a new word representing a unique ob-
ject of interest (e.g. the headless statue shown in Figure 22).
We can then generate images of the learned object in our
learned style using prompts of the form “A drawing of a
Sstatue 10 the style of Sgerqireq” Or “A drawing of a Ssiqiye
in the style of Supstract”’- Example results are presented in
the bottom half of Figure 22. As can be seen, TI struggles in
composing both the learned style and subject in a single im-
age. Specifically, TI either struggles in capturing the unique
shape of the statue (e.g. its missing head) or struggles in
capturing the learned sketch style (e.g. TI may generate im-
ages in color). In contrast, our method is able to generate a
range of possible sketch abstractions that successfully cap-
ture the input subject.
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Figure 23. Comparisons with CLIPasso [16]. We show CLIPasso
results obtained when applied over an entire scene image using
128 and 64 strokes respectively. We show our sketch results ob-
tained using approximately the same number of strokes.

7.2. Scene Sketching Approaches

In Figure 23, we provide a comparison to CLIPasso. We
applied CLIPasso on the masked object and obtained the
abstraction by explicitly specifying the number of strokes
(i.e. 64,32, 16, and 8 strokes). In the second and third rows



we show the simplification results obtained by our method,
at two different fidelity levels. Since CLIPasso only offers
a single axis of abstraction (mostly governed by simplifica-
tion), the fidelity level of the sketch can not be explicitly
controlled. Additionally, unlike CLIPasso, where the user
must manually determine the number of strokes required to
achieve different levels of abstraction, our approach learns
the desired number of strokes.

Lastly, observe that since each sketch of CLIPasso is
generated independently, the resulting sketches may not
portray a gradual, smooth simplification of the sketch since
each optimization process may converge to a different local
minimum. By training an MLP network to learn this grad-
ual simplification, our resulting sketches depict a smoother
simplification, where each sketch is a simplified version of
the previous one.

In Figure 24 we provide additional scene sketching com-
parisons to alternative scene sketching methods. In Fig-
ure 25 we provide additional sketch comparisons to all
styles supported by UPDG [17] and Chan et al. [2]. In Fig-
ure 26 we provide additional comparisons to CLIPasso.
In Figures 27 to 29 we show the 35 sketches produced by the
different sketch approaches used for the quantitative exper-
iment. Note that in Figure 28 we show the results obtained
by CLIPasso when using our scene decomposition tech-
nique, specifically, we separate the input images into fore-
ground and background and use CLIPasso to sketch each
image separately, and then combine the results.

20



CLIPasso CLIPasso Ours Ours
(128 Strokes) (32 Strokes) (Layer 2) (Layer 11)
Figure 24. Scene sketching results and comparisons.

Input Edge Extraction UPDG Photo-Sketching Chan et al. [2]
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Figure 25. Scene sketching comparison to Chan et al. [2] and UPDG [17] across three different styles supported by each of their methods.
For our results, we show three sketches illustrating the various levels of abstraction that our method is capable of achieving.
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Figure 26. Comparison to CLIPasso. For CLIPasso, we generate the sketches using 128, 64, 32, and 16 strokes. In the top set of results, we
use our scene decomposition technique and apply our implicit simplification starting with 64 strokes for the foreground and background
sketches. For the bottom set of results, we do not use the scene decomposition approach and start with simplification using 128 strokes.
We show our results for layers 2 and 11.
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Figure 27. The 35 sketches produced for the quantitative experiment. On the left are the results of CLIPasso with four levels of abstraction,
and on the right are our results with four levels of abstraction obtained using layer 11 of CLIP-ViT.
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Figure 28. A comparison to CLIPasso with the scene separation technique on the 35 images used for the quantitative experiment. On the
left are the results of CLIPasso with four levels of abstraction, when we separate the image into foreground and background, and sketch
each of the separately. On the right are our results with four levels of abstraction obtained using layer 11 of CLIP-ViT.
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Figure 29. The 35 sketches produced for the quantitative experiment. On the left are the results by Chan ez al. [2] with the three provided
styles, the last row on the left is by Photo-Sketch [7]. On the right are the results by UPDG [17] with the three provided styles.

U

g

;j*

Es S a
e

26



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

AUTOMATIC1111. Stable  diffusion
https://github.com/AUTOMATIC1111/
stable-diffusion-webui, 2022. 19
Caroline Chan, Frédo Durand, and Phillip Isola. Learning to
generate line drawings that convey geometry and semantics.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7915-7925, 2022. 20,
21, 22,26

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and An-
drew Rabinovich. Gradnorm: Gradient normalization for
adaptive loss balancing in deep multitask networks. CoRR,
abs/1711.02257, 2017. 2

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-
nik, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint
arXiv:2208.01618, 2022. 19

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840-6851, 2020. 19

Mengtian Li, Zhe Lin, Radomir Mech, Ersin Yumer, and
Deva Ramanan. Photo-sketching: Inferring contour draw-
ings from images. In 2019 IEEE Winter Conference on Ap-
plications of Computer Vision (WACV), pages 1403—-1412.
IEEE, 2019. 26

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741,2021. 19

Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood De-
hghan, Osmar R Zaiane, and Martin Jagersand. U2-net: Go-
ing deeper with nested u-structure for salient object detec-
tion. Pattern recognition, 106:107404, 2020. 1

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable vi-
sual models from natural language supervision. CoRR,
abs/2103.00020, 2021. 2

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 19

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International Confer-
ence on Machine Learning, pages 8821-8831. PMLR, 2021.
19

webui.

27

(13]

[14]

[15]

[16]

(17]

(18]

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image syn-
thesis with latent diffusion models, 2021. 19

Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487,2022. 19

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
2149-2159, 2022. 1

Yael Vinker, Ehsan Pajouheshgar, Jessica Y. Bo, Ro-
man Christian Bachmann, Amit Haim Bermano, Daniel
Cohen-Or, Amir Zamir, and Ariel Shamir.  Clipasso:
Semantically-aware object sketching. ACM Trans. Graph.,
41(4), jul 2022. 2, 6, 19

Ran Yi, Yong-Jin Liu, Yu-Kun Lai, and Paul L Rosin.
Unpaired portrait drawing generation via asymmetric cy-
cle mapping. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8217—
8225, 2020. 20, 22, 26

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, et al. Scaling autoregres-
sive models for content-rich text-to-image generation. arXiv
preprint arXiv:2206.10789, 2022. 19


https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/AUTOMATIC1111/stable-diffusion-webui

