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A. Proof of Eq. (2)
According to the convolution definition, the output of the

channel i as the following

Yi =

CinMM∑
j=1

Ab
ij ∗Wb

ij

⊙ α (8)

There are Cin×M×M multiplications, and these multi-
plications’ output is -1 or 1. Assuming that there are A mul-
tiplications with the output −1 and B multiplication with
output 1, we have A + B = Cin ×M ×M . Thus, Yi can
be derived as

Yi = A−B = 2A− Cin ×M ×M. (A1)

In addition, because Ab
ij and Wb

ij are binarized, A can
be calculated as

A =

CinMM∑
j=1

XNOR(Ab
ij ,Wb

ij). (A2)

Finally, we have Eq. (2) by replacing A with Eq. (A2) as

Yi = (2

CinMM∑
j=1

XNOR(Ab
ij ,Wb

ij)−Cin ×M ×M)⊙ α.

(2)

B. Proof of Eq. (3)
Assuming that S includes weight values of the channel

j, which are similar to the weights of the channel i (com-
pared one-one respectively). D includes weight values of
the channels j, which are different from the weights of the
channel i (compared one-one respectively), |D| = dij . Ab

s

and Ab
d are input activations for S and D, respectively. Pj

can be as

Pj =
∑

Ws∈S
XNOR(Ab

s,Ws) +
∑

Wd∈D
XNOR(Ab

d,Wd).

(A3)
Because input activation of the channel i is the same as

that of the channel j. Suppose D̄ includes weights of the

channel i, which are different from that of the channel j,
|D| = |D̄| = dij . We can have Pi as

Pi =
∑

Ws∈S
XNOR(Ab

s,Ws) +
∑

W̄d∈D̄

XNOR(Ab
d, W̄d),

(A4)
In consequence,

∑
Ws∈S XNOR(Ab

s,Ws) can be calcu-
lated as,∑
Ws∈S

XNOR(Ab
s,Ws) = Pi −

∑
W̄d∈D̄

XNOR(Ab
d, W̄d),

(A5)
and ∀ input activations, based the characteristics of

XNOR operation, we have

∑
Wd∈D

XNOR(Ab
d,Wd) +

∑
W̄d∈D̄

XNOR(Ab
d, W̄d) = dij .

(A6)
Use Eq. (A5) and Eq. (A6), we can reformulate the Eq.
(A3) as

Pj = Pi − dij + 2
∑

Wd∈D
XNOR(Ab

d,Wd). (A7)

In Sec. 2, we have Pij =
∑

Wd∈D XNOR(Ab
d,Wd).

Thus, we finally have the following equation.

Yj = 2(Pi − dij + 2Pij)− Cin ×M ×M. (3)

C. Additional results
Effect of the number of centers. In this section, we pro-

vide an additional experimental results related to the effect
of the number of initial centers for the training. In particu-
lar, we do the training on VGG-small model and CIFAR-10
dataset with different number of centers, while λ is fixed
at 4e-6. Besides, each number of centers, we execute the
training three times and get the mean value for the report.

Table A1 provides the MST depth, number of parame-
ters, bit-ops and accuracy w.r.t. different number of centers.
Accordingly, the MST depth, number of parameters and
bit-ops tend to increase as the number of centers increases.



#centers MST-depth
#Params
(Mbit)

#Bit-Ops
(GOps)

Top-1 Acc.
mean ± std (%)

1 22.3 0.545 0.119 91.49± 0.04
2 30.3 0.550 0.118 91.45± 0.08
4 47.7 0.574 0.125 91.42± 0.06
6 60.3 0.581 0.130 91.53± 0.07
8 73.0 0.607 0.136 91.49± 0.04

Table A1. Accuracy, MST depth, number of parameters and bit-
Ops w.r.t. different number of centers on CIFAR-10 VGG-small
model.
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Figure A1. Number of parameters and MST depth on each convo-
lution layer w.r.t. different number of centers.

Specifically, when the number of centers changes from 1 to
8, the MST depth increases 3.27×, the number of param-
eters and bit-ops increase 1.11× and 1.14×, respectively.
Meanwhile, accuracy barely changes with different num-
ber of centers. For each binary convolution layer, as shown
in Figure A1, as the number of centers increases, both the
MST depth and number of parameters also increase. These
findings suggest that opting for a single center is the most
effective strategy to minimize MST depth, parameters, and
bit-ops while preserving accuracy.


