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Abstract

In this supplementary material, we provide more details
and experimental results to complement the manuscript. We
provide in Section 1 the details of the evaluation metrics, in
Section 2 cross-dataset cross-task analysis on the perfor-
mance in max F-measure, in Section 3 more comparisons
against SOTA SOD models, in Section 4 more comparisons
against SOTA COD models, in Section 5 the details of our
Poping network, in Section 6 more qualitative comparisons,
in Section 7 the fair comparison with SOTA methods across
different resolutions, in Section 8 sensitivity analysis on the
hyperparameters, and in Section 9 evaluation with the same
backbone.

1. Evaluation Metrics
We evaluate our performance with four generally-

recognized metrics: F-measure is a region-based similarity
metric that takes into account both Precision (P) and Recall
(R). Mathematically, we have F-measure: Fβ = (1+β 2)·P·R

β 2·P+R .

The value of β 2 is set to be 0.3 as suggested in [1] to em-
phasize the precision. In this paper, we report the max-
imum F-measure score, denoted as (Fm), across the bi-
nary maps of different thresholds. Mean Absolute Er-
ror (M) measures the approximation degree between the
saliency map and ground-truth map at the pixel level. S-
measure (Sm) [4] evaluates the similarities between object-
aware (So) and region-aware (Sr) structures of the saliency
map compared to the ground truth. Mathematically, we
have: Sm = α ·So +(1−α) ·Sr, where α is set to be 0.5. E-
measure (Em) evaluates both image-level statistics and lo-
cal pixel-matching information. Mathematically, we have:
Em = 1

W×H ∑
W
i=1 ∑

H
j=1 φFM(i, j), where φFM(i, j) stands for

the enhanced-alignment matrix as presented in [5].

2. Cross-Dataset Cross-Task Comparison
We present in Figures 1 & 2 the performance of differ-

ent methods in max F-measure on COD and SOD tasks.
We compare in total 46 methods (•), where our method offers
state-of-the-art results despite their task specialization. Details and
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Figure 1. Comparison against 27 RGB SOTA COD models.
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Figure 2. Comparison against 19 RGB-D SOTA SOD models.
more comparisons can be found in Tables 2 & 1.

3. Detailed Comparisons on SOD

We also provide an exhaustive comparison against SOTA RGB-
D SOD models, as shown in Table 1. It is important to notice that
our method with source-free depth (✗) already achieves better per-
formance than most competing RGB-D methods with ground truth
depth (✓). When using the ground truth depth on a par with other
RGB-D methods, our method further improves the performance
by a significant margin.



Table 1. Quantitative comparison on RGB-D SOD datasets. ↑ (↓) denotes that the higher (lower) is better. We use the Mean Absolute Error
(M), max F-measure (Fm), S-measure (Sm), and max E-measure (Em) as evaluation metrics. GD stands for GT Depth. Bold denotes the
best performance. Underline denotes the second-best performance. Ours stands for our method with 352×352 resolution, which is on par
with other counterparts. Ours+ stands for our method with 512×512 resolution.

GD Public. Dataset NLPR [34] NJUK [19] STERE [30] SIP [9]
Metric M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

Performance of RGB-D Models Trained with GT Depth
✓ CV PR19 [53] CPFP .036 .867 .888 .932 .053 .877 .878 .923 .051 .874 .879 .925 .064 .851 .850 .903
✓ ICCV19 [35] DMRA .031 .879 .899 .947 .051 .886 .886 .927 .047 .886 .886 .938 .085 .821 .806 .875
✓ T IP20 [40] DRLF .031 .904 .903 .929 .055 .896 .886 .913 .050 .897 .887 .916 .070 .868 .850 .881
✓ ECCV20 [10] BBSNet .023 .918 .930 .961 .035 .920 .921 .949 .041 .909 .908 .942 .055 .883 .879 .922
✓ ECCV20 [31] HDFNet .031 .839 .898 .942 .051 .847 .885 .920 .039 .863 .906 .937 .050 .904 .878 .920
✓ ECCV20 [55] DANet .028 .916 .915 .953 .045 .910 .899 .935 .043 .892 .901 .937 .054 .892 .875 .918
✓ ECCV20 [17] CoNet .031 .887 .908 .945 .046 .893 .895 .937 .040 .905 .908 .949 .063 .867 .858 .913
✓ ECCV20 [23] CMMS .027 .896 .915 .949 .044 .897 .900 .936 .043 .893 .895 .939 .058 .877 .872 .911
✓ ECCV20 [25] CMWNet .029 .912 .917 .941 .045 .912 .902 .924 .043 .911 .905 .929 .062 .889 .867 .901
✓ CV PR20 [36] A2dele .029 .882 .898 .944 .051 .874 .871 .916 .044 .879 .878 .928 .070 .833 .828 .889
✓ CV PR20 [11] JLDCF .021 .925 .925 .954 .041 .911 .902 .935 .040 .913 .902 .933 .049 .902 .880 .918
✓ T MM21 [15] EBFSPI .028 .887 .909 .940 .038 .895 .907 .936 .041 .873 .900 .926 .052 .863 .877 .911
✓ T MM21 [58] CCAFNet .020 .909 .928 .960 .030 .919 .920 .925 .033 .893 .908 .927 .043 .892 .886 .924
✓ T IP21 [42] DSNet .024 .924 .926 .951 .034 .928 .921 .946 .036 .922 .915 .941 .051 .899 .876 .910
✓ T IP21 [52] BIANet .032 .888 .900 .930 .056 .878 .867 .898 .048 .898 .895 .918 .091 .816 .802 .847
✓ T IP21 [24] HAINet .024 .920 .924 .956 .037 .924 .911 .940 .040 .917 .907 .938 .052 .907 .879 .917
✓ T NNLS21 [9] D3Net .029 .904 .911 .942 .046 .909 .899 .927 .044 .902 .906 .925 .063 .880 .860 .897
✓ T PAMI21 [43] MobileSal .025 .916 .920 .961 .041 .914 .905 .942 .041 .906 .903 .940 .053 .898 .873 .916
✓ AAAI21 [2] RD3D .022 .927 .930 .959 .036 .923 .916 .941 .037 .917 .911 .939 .048 .905 .885 .918
✓ MM21 [27] TriTransNet .020 .909 .928 .960 .030 .919 .920 .925 .033 .893 .908 .927 .043 .892 .886 .924
✓ CV PR21 [16] DCFNet .021 .891 .920 .957 .035 .902 .905 .924 .039 .885 .903 .927 .051 .875 .873 .920
✓ ICCV21 [26] VST .023 .918 .930 .961 .035 .920 .921 .949 .041 .909 .908 .942 .055 .883 .879 .922
✓ T IP22 [3] CIRNet .028 .887 .909 .940 .038 .895 .907 .936 .041 .873 .900 .926 .052 .863 .877 .911
✓ ECCV22 [21] SPSN .023 .917 .923 .956 .032 .927 .918 .949 .035 .909 .906 .941 .043 .910 .891 .932
✗ Ours PopNet .022 .925 .926 .956 .031 .931 .920 .949 .032 .922 .916 .947 .046 .911 .885 .926
✗ Ours + PopNet .023 .924 .926 .954 .031 .933 .922 .951 .032 .924 .917 .947 .044 .911 .890 .927
✓ Ours PopNet .019 .927 .932 .963 .030 .936 .924 .952 .033 .924 .917 .947 .040 .923 .897 .937
✓ Ours+ PopNet .018 .933 .934 .964 .029 .936 .925 .953 .031 .925 .918 .949 .042 .917 .894 .933

4. Detailed Comparisons on COD
We show in Table 2 more comparisons against the SOTA COD

models to complement the manuscript. It can be seen that our
method performs favorably against all existing COD models by a
large margin, especially with the S-measure and E-measure. The
superior performances on these two metrics show that our method
can efficiently leverage the depth cues to better preserve the object
structure. Our method with higher resolution, denoted as Ours+,
can further improve the performance, showing that we can effi-
ciently deal with inputs with different resolutions. More detailed
comparisons can be found in Section 7 Table 4.

5. Details of our Poping Network
Our proposed PopNet follows the conventional encoder-

decoder design with skip connection by addition. The encoder can
be any classical backbone. We have tested with ResNet-18 [14] for
its lightweight architecture, as well as Res2Net-50 [12] for its great
performance. Our decoder is composed of 5 layers. Each layer
contains Conv2D, BN, ReLU, and upsampling. While the encoder
is with ResNet-18 (R 18), the dimensions for decoding convolu-
tions are 512, 256, 128, 64, 64, and 1. The model size becomes
48.7 MB with around 12.7M additional learning parameters. The
additional computational cost over our baseline [57] reduces the
FPS from 14 to 10, while the performance gain is significant as

shown in Figure 2 of the main manuscript. This trade-off is very
encouraging. While the encoder is with Res2Net-50 (R2 50), the
dimensions for decoding convolutions are 2048, 1024, 512, 256,
64, 1. The model size becomes 185.5 MB with around 48.5M ad-
ditional learning parameters. By replacing R 18 with R2 50, we
can further boost our performance as shown in Table 3.

6. Qualitative Comparison
We provide in Figure 3 more qualitative comparisons on chal-

lenging scenarios. It can be seen that our network can better pre-
serve the object structure and deal with occlusion. This can be
attributed to our depth poping network which brings the object to
the background surface, making it easier to be popped out and seg-
mented from the camouflaged scene.

7. Towards Higher Resolution
We provide more experimental results on different resolutions

in Table 4. We retrain all the methods in an end-to-end manner
with only RGB inputs, without requiring the GT depth. It can be
seen that our network can more effectively handle high-resolution
images and the results are very promising compared to the SOTA
counterparts. While with the same resolution, our method outper-
forms the others with large margins. Our method also achieves the
best trade-off between performance and computational cost. The
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Table 2. Quantitative comparison on benchmark COD datasets. ↑ (↓) denotes that the higher (lower) is better. We use the Mean Absolute
Error (M), max F-measure (Fm), S-measure (Sm), and max E-measure (Em) as evaluation metrics. Bold denotes the best performance.
Underline denotes the second-best performance. Ours stands for our method with 352 × 352 resolution, which is on par with other
counterparts. Ours+ stands for our method with 512×512 resolution.

Pseudo Public. Dataset CAMO [20] CHAMELEON [37] COD10K [7] NC4K [28]
Metric M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

Performance of RGB COD Models
✓ CV PR19 [44] CPD .113 .727 .726 .754 - - - - .057 .671 .748 .799 .074 .772 .788 .829
✓ ICCV19 [54] EGNet .109 .736 .732 .801 - - - - .060 .668 .736 .809 .075 .765 .777 .840
✓ ICCV19 [45] SCRN .089 .781 .778 .816 - - - - .046 .730 .789 .840 .059 .821 .830 .869
✓ AAAI20 [41] F3Net .108 .703 .711 .752 - - - - .051 .661 .738 .806 .069 .764 .780 .833
✓ CV PR20 [56] ITSD .101 .743 .748 .797 - - - - .059 .689 .766 .833 .063 .789 .810 .861
✓ CV PR20 [33] MINetR .095 .739 .737 .770 - - - - .043 .700 .766 .831 .060 .799 .804 .851
✓ CV PR20 [49] UCNet .093 .766 .739 .789 - - - - .041 .724 .776 .860 .055 .811 .811 .874
✗ CV PR20 [7] SINet .099 .762 .751 .790 .044 .845 .868 .908 .051 .708 .771 .832 .058 .804 .808 .873
✓ ECCV20 [13] CSNet .091 .775 .770 .813 - - - - .047 .706 .775 .838 .087 .724 .750 .777
✓ MICCAI20 [8] PraNet .094 .773 .769 .827 - - - - .045 .730 .789 .862 .058 .812 .822 .877
✗ CV PR21 [28] SLSR .080 .791 .787 .843 .030 .866 .889 .938 .037 .756 .804 .854 .048 .836 .839 .898
✗ CV PR21 [47] MGL-R .088 .791 .775 .820 .031 .868 .893 .932 .035 .767 .813 .874 .053 .828 .832 .876
✗ CV PR21 [29] PFNet .085 .793 .782 .845 .033 .859 .882 .927 .040 .747 .800 .880 .053 .820 .829 .891
✗ CV PR21 [22] UJSC .072 .812 .800 .861 .030 .874 .891 .948 .035 .761 .808 .886 .047 .838 .841 .900
✗ IJCAI21 [38] C2FNet .079 .802 .796 .856 .032 .871 .888 .936 .036 .764 .813 .894 .049 .831 .838 .898
✗ ICCV21 [46] UGTR .086 .800 .783 .829 .031 .862 .887 .926 .036 .769 .816 .873 .052 .831 .839 .884
✗ CV PR22 [18] SegMAR .080 .799 .794 .857 .032 .871 .887 .935 .039 .750 .799 .876 .050 .828 .836 .893
✗ CV PR22 [32] ZoomNet .074 .818 .801 .858 .033 .829 .859 .915 .034 .771 .808 .872 .045 .841 .843 .893
Performance of RGB-D Models Retrained with Source-free Depth
✓ ECCV20 [10] BBSNet .088 .783 .779 .821 .040 .859 .876 .917 .044 .735 .763 .840 .059 .818 .825 .869
✓ MM21 [48] CDINet .100 .638 .732 .766 .036 .787 .879 .903 .044 .610 .778 .821 .067 .697 .793 .830
✓ CV PR21 [16] DCF .089 .724 .749 .834 .037 .821 .850 .923 .040 .685 .766 .864 .061 .765 .791 .878
✓ T IP21 [24] HAINet .084 .782 .760 .829 .028 .876 .876 .942 .049 .735 .781 .865 .057 .809 .804 .872
✓ ICCV21 [50] CMINet .087 .798 .782 .827 .032 .881 .891 .930 .039 .768 .811 .868 .053 .832 .839 .888
✓ ICCV21 [57] SPNet .083 .807 .783 .831 .033 .872 .888 .930 .037 .776 .808 .869 .054 .828 .825 .874
✓ T IP22 [39] DCMF .115 .737 .728 .757 .059 .807 .830 .853 .063 .679 .748 .776 .077 .782 .794 .820
✓ ECCV22 [21] SPSN .084 .782 .773 .829 .032 .866 .887 .932 .042 .727 .789 .854 .059 .803 .813 .867
✓ Ours PopNet .073 .821 .806 .869 .022 .893 .910 .962 .031 .789 .827 .897 .043 .852 .852 .908
✓ Ours+ PopNet .076 .826 .808 .863 .020 .907 .917 .968 .027 .824 .851 .914 .042 .861 .861 .913

Table 3. Quantitative results with different encoders for our Poping Network. R 18 and R2 50 stand for ResNet-18 [14] and Res2Net-
50 [12] as the popping network backbone, respectively.

Pseudo Public. Dataset CAMO [20] CHAMELEON [37] COD10K [7] NC4K [28]
Metric M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

✓ Ours+ (R 18) PopNet .078 .829 .802 .854 .024 .896 .908 .952 .028 .814 .844 .910 .042 .860 .857 .908
✓ Ours+ (R2 50) PopNet .076 .826 .808 .863 .020 .907 .917 .968 .027 .824 .851 .914 .042 .861 .861 .913

full performance of our method at higher resolution, denoted as
Ours+, can be found in Tables 2 & 1. We also provide in Table
5 the ablation study on the losses at higher resolution. Our losses
perform similarly across resolutions, validating their effectiveness.
The semantic loss Lsem is not ablated because it is (a) always es-
sential and (b) not the contribution of our paper.

8. Sensitivity Analysis on Hyperparameters

We conduct experiments on the hyperparameters finetuning. In
our PopNet, we have 1 hyperparameter σ controlling the slope of
the sigmoid function for separation. In addition, we have another
5 hyperparameters controlling the proportion of each loss. The
sensitivity analysis of different hyperparameters can be found in
Tables 6 & 7. Our method performs well with a large variation of
hyperparameters.

Table 4. End-to-end comparison with different resolutions on SOD
and COD benchmarks. Our method with source-free depth gener-
alizes significantly better compared to SOTA COD models.

SOD Benchmarks

Model Size Flops NJUK [19] SIP [9]
(G) M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

SegMAR [18] 3522 67.3 .036 .921 .909 .941 .052 .893 .872 .914
ZoomNet [32] 3522 167.8 .037 .926 .914 .940 .054 .891 .868 .909
Ours 3522 228.8 .031 .931 .920 .949 .046 .911 .885 .926
SegMAR [18] 5122 142.4 .035 .927 .914 .943 .050 .899 .878 .917
ZoomNet [32] 5122 353.4 .036 .926 .915 .942 .052 .895 .873 .910
Ours+ 5122 484.0 .031 .933 .922 .951 .044 .911 .890 .927

COD Benchmarks

Model Size Flops CHAMELEON [37] COD10K [7]
(G) M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

SegMAR [18] 3522 67.3 .032 .871 .887 .935 .039 .750 .799 .876
ZoomNet [32] 3522 167.8 .033 .829 .859 .915 .034 .771 .808 .872
Ours 3522 228.8 .022 .893 .910 .962 .031 .789 .827 .897
SegMAR [18] 5122 142.4 .035 .861 .875 .923 .042 .741 .792 .856
ZoomNet [32] 5122 353.4 .025 .888 .895 .942 .029 .816 .838 .895
Ours+ 5122 484.0 .020 .906 .917 .969 .027 .824 .851 .914
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Figure 3. Qualitative comparison. Our method can better preserve the object structure. Please, zoom in for more details.

Table 5. Ablation study on the proposed losses on 512×512.

Ldep Lloc Lwtv Lsep Size COD10K [7] NC4K [28]
M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

- - - - 5122 .034 .787 .821 .895 .051 .839 .840 .892
✓ - - - 5122 .031 .801 .832 .901 .046 .847 .848 .901
- ✓ - - 5122 .031 .807 .837 .904 .046 .849 .841 .897
- - ✓ - 5122 .032 .798 .832 .898 .045 .852 .850 .905
- - - ✓ 5122 .030 .811 .842 .906 .045 .851 .852 .907
✓ ✓ - - 5122 .031 .810 .841 .905 .046 .851 .849 .898
✓ - ✓ - 5122 .029 .821 .841 .904 .045 .854 .851 .902
✓ - ✓ ✓ 5122 .028 .821 .846 .910 .044 .857 .856 .908
✓ ✓ - ✓ 5122 .029 .818 .845 .909 .044 .855 .851 .904
✓ ✓ ✓ ✓ 5122 .027 .824 .851 .914 .042 .861 .861 .913

Table 6. Sensitivity analysis on hyperparameters. The ablation
studies are realized at higher resolution, i.e., 512×512.

Ldep Lloc Lwtv Lsep Lsem
COD10K [7] NC4K [28]

M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑
1 1 1 1 0.5 .030 .805 .834 .901 .046 .839 .844 .885
1 0.5 1 1 1 .031 .802 .831 .899 .046 .831 .845 .888
1 1 0.5 1 1 .030 .808 .836 .903 .046 .838 .841 .887
0.5 1 1 1 1 .030 .802 .837 .901 .044 .847 .851 .903
0.5 0.5 0.5 1 1 .031 .799 .833 .898 .045 .850 .854 .905
1 1 1 0.5 1 .029 .818 .844 .907 .044 .853 .855 .904
0.5 0.5 0.5 0.5 1 .030 .815 .844 .909 .045 .857 .856 .907
0.1 0.1 0.1 0.1 1 .029 .822 .849 .911 .043 .862 .859 .911
1 1 0.1 0.1 1 .027 .824 .851 .914 .042 .861 .861 .913

Table 7. Sensitivity analysis on the Lsep. The ablation studies are
realized at higher resolution, i.e., 512×512.

σ CHAMELEON [37] COD10K [7] NC4K [28]
M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

0.1 .035 .836 .853 .903 .034 .742 .797 .851 .048 .815 .827 .869
1 .031 .858 .875 .931 .035 .741 .799 .857 .046 .828 .836 .884
5 .026 .898 .904 .946 .030 .808 .838 .902 .046 .853 .850 .900
10 .020 .906 .917 .969 .027 .824 .851 .914 .042 .861 .861 .913
20 .026 .887 .900 .949 .034 .775 .849 .892 .047 .845 .846 .901
50 .034 .845 .862 .912 .035 .736 .794 .848 .048 .819 .828 .869

Table 8. Comparison with other models with the same Res2Net-50
backbone. Our network performs favorably with a large margin
over the counterparts.

Model Public. CHAMELEON [37] COD10K [7]
M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

SINetv2 T PAMI21 [6] .029 .873 .888 .944 .036 .769 .815 .888
C2FNet IJCAI21 [38] .032 .871 .888 .936 .036 .764 .813 .894
SPNet ICCV21 [57] .033 .872 .888 .930 .037 .776 .808 .869
PreyNet MM22 [51] .028 .880 .895 .955 .034 .775 .813 .884
PopNet Ours .022 .893 .910 .962 .031 .789 .827 .897
PopNet Ours+ .020 .906 .917 .969 .027 .824 .851 .914

9. Evaluation with the Same Backbone

Our RGB-D baseline is built upon [57] with Res2Net-50 back-
bone (R2 50). Under the consideration of a fair comparison, we
provide in Table 8 the quantitative comparison of all the methods
using the same Res2Net-50 backbone (R2 50). It can be seen that
our method performs favorably against all the counterparts.
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