
Appendix
Our Appendix is organized as follows: In section A, we

complete the proof of Theorem 1. In section B, we detail
the experimental setup not covered in our main paper. In
section C, we show our experimental results with the Adam
optimizer. In section D, we present our experiments on ad-
ditional types of non-IID data splits. In section E, we pro-
vide additional defense results. In section F, we report the
impact of local steps E. In section G, we present more gra-
dient matching loss analysis.

A. Proof of Theorem 1
We analyze FedAvg with uniformly distributed random

local learning rates in this section. Motivated by Li et
al. [7], we first define several additional notations. Let W k

t

be the model parameter maintained in the k � th client at
the t � th step and IE be the set of communication steps,
i.e., IE = {nE | n = 1, 2, · · · }. Then the update with full
clients active can be described as

V k
t+1 = W k

t � ⌘kt rLk(W
k
t , ⇠

k
t), (15)

W k
t+1 =

⇢
V k
t+1 if t+ 1 /2 IE ,PN
k=1 pkV

k
t+1 if t+ 1 2 IE ,

(16)

where V k
t+1 denotes the immediate result of one step SGD

update from W k
t .

Besides the randomness of (1) learning rate perturbation
introduced by our defense, there are two sources of random-
ness in FedAvg: (2) stochastic gradients and (3) random
sampling of clients. We use the notations E⌘k

t
(·), E⇠kt

(·),
and ESt(·) to denote the corresponding expectations.

We also define two virtual sequences V t =PN
k=1 pkV

k
t and W t =

PN
k=1 pkW

k
t . In addi-

tion, we define Gt =
PN

k=1 pk⌘trLk(W k
t) and

Gt =
PN

k=1 pk⌘
k
t rLk(W k

t , ⇠
k
t). ⇠kt and ⌘kt are inde-

pendent with each other. We have V t+1 = W t � Gt and
E(Gt) = Gt.

A.1. Lemmas
Here, we provide several Lemmas which are useful for

our proof. The proof of this Lemmas can be found in A.3.

Lemma 1. Assume Assumption 1 and 2. If ⌘t 1
4L , we

have

E
��V t+1 �W ?

��2 (1� ⌘tµ)E
��W t �W ?

��2

+ E
��Gt � Gt

��2 + 6L⌘2t�

+ 2E
NX

k=1

pk
��W t �W t

k

��2 .

Lemma 2. Assume Assumption 3 holds. It follows that

E
��Gt � Gt

��2 ⌘2t

NX

k=1

p2k(�
2
k +

1

3
G2).

Lemma 3. Assume Assumption 4, that ⌘t is non-increasing
and ⌘t 2⌘t+E for all t � 0. It follows that

E
"

NX

k=1

pk
��W t �W t

k

��2
#
 16⌘2t (E � 1)2G2.

A.2. Details of Convergence Analysis
Here, we first generate the convergence guarantee for the

case when full clients participate. A similar proof can be
found in A.3 of [7], except for the difference of constant B.
For coherence of the proof, we show the detailed procedure.
When full clients participate, we have W t+1 = V t+1. Let
�t = E

��W t �W ?
��2. Assuming Lemma 1, Lemma 2 and

Lemma 3 hold, it follows that

�t+1 (1� ⌘tµ)�t + ⌘2tB, (17)

where

B =
NX

k=1

p2k(�
2
k +

1

3
G2) + 6L�+ 32(E � 1)2G2.

For a learning rate expectation, ⌘t = �
t+� for some � >

1
µ and � > 0 such that ⌘1 min{ 1

µ ,
1
4L} = 1

4L and ⌘t
2⌘t+E . It can be proved by induction that �t v

�+t where

v = max
n

�2B
�µ�1 , (� + 1)�1

o
.

Firstly, �t v
�+t holds for t = 1. Assume it also holds

for some t, it follows that

�t+1 (1� ⌘tµ)�t + ⌘2tB

✓
1� �µ

t+ �

◆
v

t+ �
+

�2B

(t+ �)2

=
t+ � � 1

(t+ �)2
v +

�2B

(t+ �)2
� �µ� 1

(t+ �)2
v

�

 v

t+ � + 1
.

Then by the L-smoothness of L(·),

E[L(W t)]� L⇤ L

2
�t

L

2

v

� + t
.

Specifically, if we choose � = 2
µ , � = max{8L

µ , E} � 1

and denote = L
µ , then ⌘t = 2

µ
1

�+t such that ⌘t satisfies
⌘t 2⌘t+E for t � 1. Then, we have

v = max

⇢
�2B

�µ� 1
, (� + 1)�1

�

 �2B

�µ� 1
+ (� + 1)�1 4B

µ2
+ (� + 1)�1,

and

E[L(W t)]� L⇤ L

2

v

� + t

� + t

✓
2B

µ
+

µ(� + 1)

2
�1

◆
.

Partial Client Participation. For full clients participa-
tion, we always have W t+1 = V t+1, while it does not al-
ways hold when partial clients participate. We need another
Lemma to complete our proof.

Lemma 4. Assume Assumption 5 holds, it follows that

ESt

��V t+1 �W t+1

��2 N �K

N � 1

16

K
⌘2tE

2G2.

When partial clients participate,

��W t+1 �W ⇤��2 =
��W t+1 � V t+1 + V t+1 �W ⇤��2

=
��W t+1 � V t+1

��2
| {z }

A1

+
��V t+1 �W ⇤��2
| {z }

A2

+ 2hW t+1 � V t+1, V t+1 �W ⇤i| {z }
A3

.

Assume Assumption 5 holds, ESt+1W t+1 = V t+1. Thus,
A3 vanishes when we take the expectation ESt+1(·). And
from Lemma 4, it follows that

E
��W t+1 �W ⇤��2 = E(

��W t+1 � V t+1

��2 +
��V t+1 �W ⇤��2)

 E
��V t+1 �W ⇤��2 + N �K

N � 1

16

K
⌘2tE

2G2.

We use Lemma 1, Lemma 2, and Lemma 3. Then

E
��W t+1 �W ⇤��2 (1� ⌘tµ)E

��W t �W ⇤��2 (18)

+ ⌘2t (B + C),

where

C =
N �K

N � 1

16

K
⌘2tE

2G2.

Since the difference between eqn. (18) and eqn. (17) is the
constant C, we can apply the same porcess with case where
full clients participate and obtain

E[L(W t)]� L⇤

� + t

✓
2B + C

µ
+

µ(� + 1)

2
�1

◆
,

where

�1 = E
��W 1 �W ⇤��2 .

A.3. Proofs of Lemmas
Proof of Lemma 1. Since V t+1 = W t � Gt,
��V t+1 �W ?

��2 =
��W t � Gt �W ? � Gt + Gt

��2

=
��W t �W ? � Gt

��2
| {z }

A1

+
��Gt � Gt

��2

+ 2
⌦
W t �W ? � Gt,Gt � Gt

↵
| {z }

A2

Notice that E(Gt � Gt) = 0, so that EA2 = 0. By applying
eqn. (18) in [7], we obtain

A1 (1� ⌘tµ)
��W t �W ?

��2

+ 6L⌘2t�+ 2
NX

k=1

pk
��W t �W t

k

��2 .

Therefore,

E
��V t+1 �W ?

��2 = E(A1 +A2 +
��Gt � Gt

��2)

 (1� ⌘tµ)E
��W t �W ?

��2

+ E
��Gt � Gt

��2 + 6L⌘2t�

+ 2E
NX

k=1

pk
��W t �W t

k

��2 .

Proof of Lemma 2. We start from

E
��Gt � Gt

��2

= E
�����

NX

k=1

pk(⌘
k
t rLk(W

k
t , ⇠

k
t)� ⌘trLk(W

k
t))

�����

2

=
NX

k=1

p2kE
��(⌘kt rLk(W

k
t , ⇠

k
t)� ⌘trLk(W

k
t))

��2

=
NX

k=1

p2k(E
��⌘kt rLk(W

k
t , ⇠

k
t)
��2

+ E
��⌘trLk(W

k
t)

��2

� 2E < ⌘kt rLk(W
k
t , ⇠

k
t), ⌘trLk(W

k
t) >).

Since ⇠kt and ⌘kt are independent with each other. We first
erase the randomness of ⌘kt and obtain

E
��Gt � Gt

��2 =
NX

k=1

p2k(
4

3
E⇠kt

��⌘trLk(W
k
t , ⇠

k
t)
��2

+ E⇠kt

��⌘trLk(W
k
t)

��2

� 2E⇠kt
< ⌘trLk(W

k
t , ⇠

k
t), ⌘trLk(W

k
t) >)

=
NX

k=1

p2kE⇠kt
(
1

3

��⌘trLk(W
k
t , ⇠

k
t)
��2

+
��⌘t(rLk(W

k
t , ⇠

k
t)�rLk(W

k
t))

��2).

Assume Assumptions 3 and 4 hold, then

E
��Gt � Gt

��2 ⌘2t

NX

k=1

p2k(�
2
k +

1

3
G2).

Proof of Lemma 3. In a local training round, for any t �
0, there exists a t0 t, such that t � t0 E � 1 and
W k

t0 = W t0 for all k = 1, 2, · · · , N . When the learning
rate expectation ⌘t is non-increasing and ⌘t0 2⌘t for all
t� t0 E � 1, then

E
NX

k=1

pk
��W t �W k

t

��2

= E
NX

k=1

pk
��(W k

t �W t0)� (W t �W t0)
��2

 E
NX

k=1

pk
��(W k

t �W t0)
��2

NX

k=1

pkE
�����

t�1X

t=t0

⌘kt rLk(W
k
t , ⇠

k
t)

�����

2

NX

k=1

pkE
t�1X

t=t0

(E � 1)(⌘kt)
2 ��rLk(W

k
t , ⇠

k
t)
��2

NX

k=1

pkE
t�1X

t=t0

4(E � 1)⌘2t
��rLk(W

k
t , ⇠

k
t)
��2

NX

k=1

pk

t�1X

t=t0

4(E � 1)⌘2tG
2

NX

k=1

pk4(E � 1)2⌘2t0G
2

 16(E � 1)2⌘2t0G
2

Here in the first inequality, we use EkX�EXk2 EkXk2
where X = W k

t � W t0 with probability pk. The third in-
equality is obtained by Jensen inequality:

�����

t�1X

t=t0

⌘kt rLk(W
k
t , ⇠

k
t)

�����

2

t�1X

t=t0

(t� t0)(⌘
k
t)

2 ��rLk(W
k
t , ⇠

k
t)
��2 .

In the fourth inequality, we use ⌘kt 2⌘t. In the fifth in-
equality, we use E

��rLk(W k
t , ⇠

k
t)
��2 G2 (i.e., Assump-

tion 4). And in the last inequality, we use ⌘t ⌘t0
2⌘t0+E 2⌘t for t0 t t0 + E.

Proof of Lemma 4. Assume Assumption 5 holds, we
let St+1 = {i1, · · · , iK} denote the multiset of chosen in-
dexes. Then we have Wt+1 = 1

K

PK
l=1 V

il
t+1 and

ESt

��W t+1 � V t+1

��2

= ESt

������
1

K

X

i2St+1

V i
t+1 � V t+1

������

2

=
1

K2
ESt

�����

NX

i=1

I{i 2 St}(V i
t+1 � V t+1)

�����

2

=
1

K2

2

4
X

i2[N]

P (i 2 St+1)
��V i

t+1 � V t+1

��2
3

5

+
1

K2

2

4
X

i 6=j

P (i, j 2 St+1) hV i
t+1 � V t+1, V

j
t+1 � V t+1i

3

5

=
1

KN

NX

i=1

��V i
t+1 � V t+1

��2

+
X

i 6=j

K � 1

KN(N � 1)
hV i

t+1 � V t+1, V
j
t+1 � V t+1i

=
1

K(N � 1)

✓
1� K

N

◆ NX

i=1

��V i
t+1 � V t+1

��2 .

In the third equality, we use P (i 2 St+1) = K
N and

P (i, j 2 St+1) = K(K�1)
N(N�1) for all i 6= j. In the last

equality, we use
P

i2[N]

��V i
t+1 � V t+1

��2 +
P

i 6=jhV i
t+1 �

V t+1, V
j
t+1 � V t+1i = 0.

Then we bound ESt

��V i
t+1 � V t+1

��2 using the same ar-
gument for proving Lemma 3. For any t + 1 � 0, there
exists a t0 t + 1, such that t + 1 � t0 E � 1 and
W k

t0 = W t0 for all k = 1, 2, · · · , N , then

ESt

��V i
t+1 � V t+1

��2 =
��(V k

t+1 �W t0)� (V t+1 �W t0)
��2

��V k

t+1 �W t0

��2

�����

tX

t=t0

⌘kt rLk(W
k
t , ⇠

k
t)

�����

2

tX

t=t0

E(⌘kt)
2 ��rLk(W

k
t , ⇠

k
t)
��2

 16⌘2tE
2G2.

The first inequality is obtained from EkX � EXk2
EkXk2 where X = V k

t+1 � W t0 with probability pk. In
the last inequality, we use Jensen inequality, ⌘kt 2⌘t,
E
��rLk(W k

t , ⇠
k
t)
��2 G2, and ⌘t ⌘t0 2⌘t.

Thus, we obtain

E
��V i

t+1 � V t+1

��2

=
1

K(N � 1)

✓
1� K

N

◆
E
"

NX

i=1

��V i
t+1 � V t+1

��2
#

 N �K

N � 1

16

K
⌘2tE

2G2.

B. Experimental Setup
B.1. Model Architecture

We conduct our experiments of section 4.1 and 5.4 on a
logistic regression. The loss function is given by

L(W) =
1

n

nX

i=1

CrossEntropy(f(W,xi), yi) + �kWk22.

This is a convex optimization problem. The regularization
parameter � is set to 10�4 [7].

We also conduct the experiments of section 4.1 on a mul-
tilayer perceptron (MLP) and a CNN. For the MLP, there is
one hidden layer with 64 units and dropout with a probabil-
ity of p = 0.5 in the first layer. The activation function is
ReLu. For the CNN, there are two 5 ⇥ 5 convolution lay-
ers (the first with 10 channels, the second with 20 channels,
each followed with 2 ⇥ 2 max pooling), a fully connected
layer with 50 units and dropout with a probability of p =
0.5, and the activation function is ReLu.

In section 5, we use a CNN on the MNIST dataset with
the same architecture as that in section 4.1, except the chan-
nel sizes of the convolution layers and the units of the fully
connected layer are 32, 64 and 512, respectively and there
is no dropout. For the ImageNet experiments, we use a
RexNet architecture instead of a vision transformer because
we find the vision transformer architecture does not perform
well in the non-IID FL case on ImageNet.

For experiments against gradient inversion attacks, we
use the same models as in the original papers [9,11]. In de-
tail, we use a ResNet-18 architecture for defending against
the GGL attack. For DLG and iDLG attacks, the architec-
tures are shown in Table 4.

Table 4: Model architectures for DLG attack and iDLG at-
tack.

MNIST CIFAR-100 LFW
5⇥ 5 Conv 1-12 5⇥ 5 Conv 3-12 5⇥ 5 Conv 3-12
5⇥ 5 Conv 12-12 5⇥ 5 Conv 12-12 5⇥ 5 Conv 12-12
5⇥ 5 Conv 12-12 5⇥ 5 Conv 12-12 5⇥ 5 Conv 12-12
5⇥ 5 Conv 12-12 5⇥ 5 Conv 12-12 5⇥ 5 Conv 12-12

FC–10 FC–100 FC–5749

B.2. Additional Hyperparameter Setup

The initialized learning rate expectations are chosen
from the set {0.1, 0.01, 0.001} evaluated by the reserved
validation dataset. For the convergence analysis in sec-
tion 5.4, the learning rate expectations decay following
⌘t =

⌘0

1+t/50 and ⌘0 = 0.01.

For the experiments of Table 1 in section 4.1, we set the
number of local steps E as 25, the batch size B as 32, and
weight decay as 1e-4. For the experiments of Table 2 in
section 5.2, we train models with the momentum of 0.5 and
weight decay of 1e-4, 5e-4, and 1e-5 for the shallow CNN,
ResNet-18, and RexNet-130, respectively.

C. LRP with Adam Optimizer

Since FedAvg is developed based on SGD, most of our
experiments use the SGD optimizer. We also conduct the
experiments of section 4.1 using the Adam optimizer with
the same MLP. The mean and standard deviation across
three trials are reported in Table 5.

Table 5: Comparision of different learning rate combina-
tions with the Adam optimizer.

⌘1 ⌘2
Test Accuracy %

Without LRP LRP
0.001 0.001 82.76 ± 1.00 82.05 ± 1.69
0.001 0.002 88.05 ± 0.04 87.65 ± 0.69
0.001 0.0005 61.84 ± 2.20 62.46 ± 3.18
0.002 0.001 57.87 ± 9.35 62.24 ± 0.55
0.002 0.002 81.86 ± 4.36 76.08 ± 5.42
0.002 0.0005 21.43 ± 0.21 21.69 ± 0.46
0.0005 0.001 88.69 ± 0.21 88.73 ± 0.26
0.0005 0.002 88.47 ± 0.51 88.47 ± 0.55
0.0005 0.0005 84.71 ± 0.24 84.35 ± 0.74

Table 5 shows that learning rate perturbation does not
incur much accuracy fluctuation with the Adam optimizer,
except for the cases where the learning rate combinations
are {0.002, 0.001} and {0.002,0.002}. For these two cases,
the standard deviation obtained by repeated trials is quite
high. Therefore, the accuracy fluctuation is mainly caused
by allocating over-large learning rates to the first client,
not LRP. Besides these two cases, the accuracy of trained
models with and without learning rate perturbation does not
change much. In addition, we get the best test-set accuracy
with the learning rate combination of {0.0005, 0.001} and
the worst with {0.002,0.0005}, and scaling clients’ learning
rates expectation significantly impacts the test-set accuracy,
which is consistent with our observation in section 4.1.

Table 6: Additional results of test accuracy (%) on MNIST, FEMNIST, CIFAR-10, and CIFAR-100 for FedAvg and LRP
under non-IID settings, including the mean and standard deviation of test accuracy across 3 runs.

Algorithm Local learning rate MNIST FEMNIST CIFAR-10 CIFAR-100
FedAvg ⌘k = ⌘ 99.06± 0.01 99.24± 0.01 92.09± 0.45 71.86± 0.32
LRP ⌘k ⇠ U(0, 2pkN⌘) 99.07± 0.03 99.24± 0.01 92.32± 0.21 71.89± 0.17

Figure 6: Image reconstructions by GGL with B = 4, E =
4: original images (1st row) and their reconstructions with
✓k = 0.5 (2nd row), 1.0 (3rd row), and 2.0 (4th row) under
LRP.

D. Additional Accuracy Results
In our main paper, we report the accuracy results of non-

IID cases formed by our dataset sharding. We include ex-
perimental results of more types of non-IID data splits in
this section.

We compare the accuracy of models trained with LRP
and FedAvg on the MNIST, FEMNIST [1], CIFAR-10, and
CIFAR-100 datasets. For MNIST, CIFAR-10, and CIFAR-
100, we assign a proportion of the data points of each la-
bel according to Dirichlet distribution and the concentration
parameter � is 0.5. For FEMNIST, we divide the dataset
into shards, each shard has data points of digits from a sin-
gle writer. Then we allocate the shards to each client ran-
domly and equally, following [6]. Since each client has data
points from different writers, the feature distributions are
not identical among the clients. We conducted experiments
on FEMNIST using the same model architecture and hyper-
parameters as those employed for MNIST. The experimen-
tal setup is the same as in section 5, except that we set the
momentum to 0 for MNIST and FEMNIST experiments.
From the results in Table 6, it can be seen that LRP does not
cause obvious accuracy loss in all the cases.

E. Additional Defense Results
E.1. Additional Results of LRP against GGL

For fair comparisons with previous works, we only
show the results of experiments against GGL when batch
size B = 1, the number of local steps E = 1, and
E(⌘kt)/E(⌘t) = 2.0 in our main paper. Here we present

Figure 7: Image reconstructions by GGL with B = 1, E =
4, and ✓k = 0.5, 1.0, 2.0.

the reconstructions of other cases.
Figure 6 shows the reconstructions generated by GGL

when the client trains its local model with B = 4, E = 4
and there are four samples in the client’s dataset. We set the
initialized learning rate to be 1e-4 and decay as ⌘t = ⌘0/t
to avoid one-shot training [7]. For convenience, we define
✓k = E(⌘kt)/E(⌘t), which denotes the degree of learning
rate scaling. We sample two groups of images from the
validation set of ImageNet and set ✓k to be 0.5, 1.0, and 2.0,
respectively. The indexes of the samples are {8112, 8113,
8114, 8115} and {11943, 11944, 11945, 11946}. It can be
seen that the client’s private information is well protected
under our defense.

We also conduct experiments where the client only has
one data point with E = 4 and repeat the experiments six
times for every ✓k. The results are shown in Figure 7. In
this setting, we admit that it is possible for the adversary
to reveal information about the raw data, especially when
✓k = 1. This is because the adversary can analytically ex-
tract the true label from the gradients [10] and utilize the
label as prior information to generate the images. Since the
GAN used by the adversary to generate reconstructions is
trained on the training set of ImageNet, the label can signif-
icantly improve the reconstructions. However, this experi-
mental case is mostly not realistic and the adversary cannot
precisely extract the labels when there is more than one data
point in the client’s dataset, as shown in Figure 6.

E.2. Comparison of LRP with Additional Privacy
Defenses

Besides the five baseline defenses in our main paper,
some other methods, which are not specifically designed for
privacy preservation, may also have the property to defend

Original No Defense No Classifier
Layer Updates BSP LSP LRPNo BN

Layer updates

Figure 8: Comparison of our method with additional pri-
vacy defenses against GGL.

against privacy attacks, such as not sharing the BN layer
updates [5, 8] or classifier layer updates [2]. Moreover, to
investigate whether hiding local hyperparameters except for
learning rates can also degrade gradient inversion attacks,
we evaluate the performance of perturbations on the num-
ber of local steps (LSP) and batch size (BSP) against GGL.

The reconstructions generated by GGL under these addi-
tional defense settings are shown in Figure 8. We set B = 4,
E = 4, ✓k = 2.0, and learning rate to be 1e-4. The orig-
inal images are randomly sampled from the validation set
of ImageNet and their corresponding labels are provided to
the attacker. It can be seen that merely hiding the BN layer
or classifier layer updates cannot prevent GGL from recov-
ering information about clients’ data. In addition, LRP and
LSP deteriorate the quality of images generated by GGL.
Conversely, BSP exhibits limited impact on the attack in
this case. Consequently, except for LRP, perturbing the
number of local training steps to obscure this hyperparam-
eter from the server can also mitigate this attack. However,
introducing perturbations to the number of local steps might
increase local computing overhead. Furthermore, since the
possible number of local steps is limited, adversaries could
evade this defense by iteratively deploying attacks with dif-
ferent numbers of local steps and selecting the reconstruc-
tions with the highest quality.

E.3. Defense Results against IG Attack
In addition to DLG, iDLG, and GGL attacks, we also

evaluate the effectiveness of our method against one other
image-based gradient inversion attack [4], which exploits a
magnitude-invariant loss based on cosine similarity as the
gradient matching loss and total variation as an image prior.
Like [9], we call this attack as IG.

Figure 9, shows the data reconstructions generated by IG
when batch size B = 4 and local steps E = 4. We use a
ResNet-18 architecture. The learning rate is set to be 1e-2
and the images are randomly sampled from the test set of the
CIFAR-10 dataset. It can be seen that IG generates similar
images to the origin data when no defense is employed. In

Figure 9: Defense results against IG attack.

contrast, with the application of our approach, the quality of
generated images is significantly declined, which prevents
privacy leakage.

E.4. Protection against Gradient Inversion Attack
on Text

As discussed in section 6, LRP can also be applied to
enhance privacy preservation for NLP FL tasks (e.g., text
classification). Tabel 7 shows the results of our experiments
against TAG attack [3], which is a gradient inversion attack
on transformer-based language models. We choose the ideal
case for the adversary with the number of local step E = 1.
It can be seen that the attack reveals much less information
about the raw data when LRP is applied.

Table 7: Defense against TAG attack on COLA.

Example 1 Example 2

Original
One more pseudo
generalization and

i’m giving up.

The more we
study verbs, the
crazier they get.

FedAvg
i m’5 oneization more
giving five pseudo up

general and.

They study
the verbs get we,.

” 46. they

LRP
20 general, organize

a ” interaction 3
and.. ization 184

anderson 20,, the 23
20 more verbs 15

we 266 the

F. Impact of Number of Local Steps
In FL tasks, overhead is mainly caused by local train-

ing and communication. Intuitionally, more local training
steps E means heavier local training burden but less com-
munication overhead. However, Theorem 1 indicates that
to achieve a certain accuracy, the required communication
rounds T/E is a hyperbolic function of E. Therefore, it first
decreases and then increases as E increases. We empirically
observe this phenomenon in Figure 10. The experimental
setting is the same as that in section 5.4. We set the target
global training-set accuracy as 87% and 85.5% for IID and
non-IID settings, respectively. A similar phenomenon can

be found in the work of [7], except the local learning rates
are not perturbed. Hence, increasing local training steps
does not always reduce the communication burden. Over-
large E may cause high communication overhead.

Figure 10: The impact of E.

(a) Soteria

(b) Gradient Compression

(c) Gradient Clipping

Figure 11: Curves of gradient matching loss and LPIPS.

(a) FedAvg (no defense) (b) FedAvg (no defense)

(c) Additive Noise (d) Additive Noise

(e) Gradient Clipping (f) Gradient Clipping

(g) Gradient Compression (h) Gradient Compression

(i) Soteria (j) Soteria

(k) LRP (l) LRP

Figure 12: Landscapes of the `2 gradient matching loss
(left) and LPIPS (right) under various defensive settings.

G. More Gradient Matching Loss Analysis
In our main paper, we only include the curves of gradient

matching loss and LPIPS when no defense, additive noise,
and LRP are applied (Figure 4b). Here we present the full
results under the other baseline defenses in Figure 11. We
also extend the curves to surfaces by adding a second ran-
dom vector z3: z(↵,�) = z1 + ↵(z2 � z1) + �z3, where
the latent vectors z1 is found by GGL, z2 is from GAN in-
version and z3 is normalized according to z2 � z1. The raw
data is indexed by 11943 in the ImageNet validation set.
The results are shown in Figure 12.

A general observation is that non of the baseline defenses
obviously reform the curves or surfaces, compared with the
results where no defense is applied, while our LRP defense
changes the shape of the curves and surfaces such that la-
tent space vectors with low gradient matching loss do not
generate images with low LPIPS. This explains why LRP
outperforms the baselines.

References
[1] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian

Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith,
and Ameet Talwalkar. Leaf: A benchmark for federated set-
tings. arXiv preprint arXiv:1812.01097, 2018. 5

[2] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay
Shakkottai. Exploiting shared representations for personal-
ized federated learning. In International Conference on Ma-
chine Learning, pages 2089–2099. PMLR, 2021. 6

[3] Jieren Deng, Yijue Wang, Ji Li, Chao Shang, Hang Liu,
Sanguthevar Rajasekaran, and Caiwen Ding. TAG: Gradient
attack on transformer-based language models. arXiv preprint
arXiv:2103.06819, 2021. 6

[4] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and
Michael Moeller. Inverting gradients-how easy is it to break
privacy in federated learning? Advances in Neural Informa-
tion Processing Systems, 33:16937–16947, 2020. 6

[5] Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and
Sanjeev Arora. Evaluating gradient inversion attacks and de-
fenses in federated learning. Advances in Neural Information
Processing Systems, 34:7232–7241, 2021. 6

[6] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Fed-
erated learning on non-IID data silos: An experimental study.
In 2022 IEEE 38th International Conference on Data Engi-
neering (ICDE), pages 965–978. IEEE, 2022. 5

[7] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and
Zhihua Zhang. On the convergence of FedAvg on non-IID
data. arXiv preprint arXiv:1907.02189, 2019. 1, 2, 4, 5, 7

[8] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp,
and Qi Dou. FedBN: Federated learning on non-IID
features via local batch normalization. arXiv preprint
arXiv:2102.07623, 2021. 6

[9] Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Au-
diting privacy defenses in federated learning via generative
gradient leakage. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
10132–10142, 2022. 4, 6

[10] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. iDLG:
Improved deep leakage from gradients. arXiv preprint
arXiv:2001.02610, 2020. 5

[11] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from
gradients. Advances in Neural Information Processing Sys-
tems, 32, 2019. 4

