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Figure 1: The detailed network architecture of the proposed
multi-scale coordinate-based attention network. The num-
bers in the rectangles denote the feature length.

1. Method Details

Detailed network architecture. To facilitate the repro-
duction of our work, we show the detailed network architec-
ture of the multi-scale coordinate-based attention network
in Figure 1.

Training data augmentation. Since the object detec-
tion/segmentation by Mask-RCNN is imperfect and may
cause both over-segmentation or under-segmentation dur-
ing the inference, we adopt data augmentation to mimic the
imperfections of segmentation during the network training.
Specifically, we use the dilation and erosion operations de-
scribed in [1] to generate the imperfect object mask based
on the ground-truth mask in the NOCS-REAL275 dataset.
We found this data augmentation strategy greatly increases
our performance on pose estimation despite the inferior per-
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Figure 2: Keypoints detection on symmetric objects.

formance on object detection/segmentation.

2. Handling Symmetric Objects
Both the NOCS-REAL275 and Modelnet40-partial

datasets contain symmetric objects (i.e., objects with rota-
tional symmetry) that might incur ambiguity on the pose
estimation. In this section, we describe how to handle sym-
metry in terms of keypoints detection and pose estimation,
respectively, to alleviate this problem.

Handling symmetry in keypoints detection. To better
leverage the keypoints and determine the correspondences
between symmetric object instances and the categorical
mean shape, as shown in Figure 2, we detect the symmetric
keypoints on symmetric object instances. To achieve this,
during the keypoints detection with Skeleton Merger [3],
we first generate k/4 keypoints on the object surface. Then,
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Figure 3: Examples of objects and the pose estimation of our method in the NOCS-REAL275 heavy occlusion subset.
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Figure 4: Illustration of handling symmetry in pose estima-
tion.

we rotate the detected keypoints with 90◦, 180◦, 270◦ along
the symmetric axis, respectively, to generate the rest 3/4 · k
keypoints. Last, all the generated keypoints are optimized
by the encoder-decoder network in Skeleton Merger [3].
We found this symmetric keypoints detection trick is able
to regularize the per-instance SOCS and thus lead to bet-
ter pose estimation results. The quantitative comparisons
of methods with (Full method) and without (w/o symmetric
keypoints) this trick are reported in Table 1.

Handling symmetry in pose estimation. Handling sym-
metry is a crucial component in many pose estimation ap-
proaches. In our method, we tackle this problem by intro-
ducing a new output representation and loss function for
the rotational symmetric categories. Suppose the object is
symmetric w.r.t. the Y-axis in the canonical space (shown
in Figure 4). Instead of estimating the absolute coordinate
along each axis, for any point x, we estimate its distance to
the Y-axis xSOCS

D as well as the coordinate on Y-axis xSOCS
Y :

xSOCS
D = Softmax(MLPD(Fx)),

xSOCS
Y = Softmax(MLPY(Fx)),

(1)

Table 1: Ablation study of handling symmetry. Experi-
ments are conducted on the categories of symmetric object
in the NOCS-REAL275 dataset.

Method IoU75↑ 10◦2cm↑
w/o symmetric keypoints 0.72 0.87

w/o symmetric output 0.71 0.80

Full method 0.74 0.89

where MLPD(·) and MLPY(·) are the MLPs, Fx is the ex-
tracted feature at x. Therefore, the training loss of SOCS is:

LSOCS =
∑
x∈X

[LCE(x
SOCS
D , x̂SOCS

D ) + LCE(x
SOCS
Y , x̂SOCS

Y )].

(2)
The optimization function for pose and size estimation

should be modified accordingly:

min
i

∑
x∈X

∥∥T · S · Φ(x)i − x
∥∥2 (3)

where Φ(x) denotes a point that lies on the orbit along the
symmetry axis whose radius is the estimated xSOCS

D and the
coordinate on Y-axis is xSOCS

Y . Its exact location on the
orbit is estimated along with the object pose and size in
the optimization. The quantitative comparisons of methods
with (Full method) and without (w/o symmetric output) this
modified loss function are reported in Table 1.

3. More Results on NOCS-REAL275
We provide more results on the NOCS-REAL275 dataset

in this section. There are several phenomena we can ob-
serve from the results. First, as mentioned in the paper, the
NOCS-REAL275 subset containing objects with heavy oc-
clusions is visualized in Figure 3. It is clear that the pose
estimation on these objects could be challenging due to
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Figure 5: More visual comparisons to the state-of-the-art on the NOCS-REAL275 dataset.

the occlusion. Second, more qualitative comparisons are
shown in Figure 5. We see that our method outperforms
the NOCS-based baseline method DPDN [2] in most of the
cases, demonstrating the advantages of the proposed SOCS.
Third, we report the per-category quantitative performances
in Table 2. The results show that our method produces ac-
curate results in all metrics over all categories.

4. More Results on Modelnet40-partial

The qualitative comparisons to the state-of-the-art on the
Modelnet40-partial dataset are visualized in Figure 6. The
Modelnet40-partial dataset contains categories with large
shape variations, making the pose estimation on unseen in-
stances difficult. The results show that our method out-
performs the RBP-Pose [4], especially in categories with
large shape variations, such as airplane and sofa. We also
provide the per-category quantitative performances on the
ModelNet40-partial dataset in Table 3.
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