
Supplementary Material for UniDexGrasp++: Improving Dexterous
Grasping Policy Learning via Geometry-aware Curriculum and

Iterative Generalist-Specialist Learning

Abstract In this supplementary material, we present a com-
prehensive description of our method, baselines, and imple-
mentation in Section A. We also provide detailed informa-
tion about our experiments in Section B, including the ex-
perimental setup and training details. Additionally, we re-
port more comprehensive quantitative results in Section C.
For more visualization of our pipeline and grasping demon-
strations, please refer to the supplementary video.

A. Method and Implementation Details

We formalize our whole pipeline method in Algo-
rithm A.

A.1. Details about Our Method

Algorithm A UniDexGrasp++
Require: Task Space T, K State-based Specialists {SSj},

a State-based Generalist SG, K Vision-based Specialists
{V Sj}, a Vision-based Generalist V G

1: {Cl} ← GeoCurriculum(T) for object curriculum.
2: Geometry-aware task curriculum learning to train SG0.
3: for i = 1, 2, . . . do:
4: Initialize specialist SSj

i = SGi

5: {cj} ←GeoClustering(T)
6: Online assign tasks that are nearest to cj to specialist SSj

i

and train SSj
i ▷ RL

7: if {SSj
i } are optimal then break

8: else
9: Distill {SSj

i } to SGi+1 ▷ DAgger-based Distillation
10: end if
11: end for
12: Distill {SSj

i } to V G0 ▷ DAgger-based Distillation
13: for i = 1, 2, . . . do:
14: Initialize specialist V Sj

i = V Gi

15: {cj} ← GeoClustering(T)
16: Online assign tasks that are nearest to cj to specialist V Sj

i

and train V Sj
i ▷ RL

17: Distill {V Sj
i }

K
i=1 to V Gi+1 ▷ DAgger-based Distillation

18: if V Gi+1 is optimal then break
19: end if
20: end for

Details of GiGSL: During the state-based policy learning
stage, we terminate training when the success rate of the
current policy SSn is only marginally better than the pre-
vious policy SSn−1 (by less than 0.5%). At this point, we
distill SSn to the vision-based policy. In the vision-based
policy learning stage, we stop training when the success
rate of the current policy V Gn is only marginally better
than the previous policy V Gn−1 (by less than 0.5%). We
then use V Gn as our final policy.

Details of AutoEncoder: We train the point cloud 3D au-
toencoder using the point cloud {P (k)

t=0}
Nsample
k=1 of the ini-

tialized objects in the sample tasks {τ (k)}Nsample
k=1 . The au-

toencoder follows an encoder-decoder structure. The en-
coder E encodes P (k)

t=0 and outputs the encoding latent fea-
ture z(k) = E(P (k)

t=0). The decoder D takes z(k) as input and
generates the point cloud P̂

(k)
t=0.

z(k) = E(P (k)
t=0) (1)

P̂
(k)
t=0 = D(z(k)) (2)

The model is trained using the reconstruction loss LAE,
which is the Chamfer Distance between P

(k)
t=0 and P̂

(k)
t=0.

LAE = ChamferDistance(P (k)
t=0, P̂

(k)
t=0) (3)

Details of GeoCurriculum: In our implementation, we
choose Nlevel = 4 and use a 4-stage GeoCurriculum to train,
where the task number is 1-300-900-Ntrain. We also com-
pare different Nlevel and the result can be found in Sec. C

A.2. Details about Baselines

PPO Proximal Policy Optimization (PPO) [8] is a
popular model-free on-policy RL method. We adopt PPO
as our RL baseline.

DAPG Demo Augmented Policy Gradient (DAPG) [6]
is a popular imitation learning (IL) method that lever-
ages expert demonstrations to reduce sample complexity.



Following the approach of ILAD [10], we generate demon-
strations using motion planning.

ILAD ILAD [10] is an imitation learning method that
enhances the generalizability of DAPG. It introduces a
novel imitation learning objective on top of DAPG, which
jointly learns the geometric representation of the object
using behavior cloning from the generated demonstrations
during policy learning. We use the same generated demon-
strations as in DAPG in this method.

GSL Generalist-Specialist Learning (GSL) [3] is a
three-stage learning method that first trains a generalist
using RL on all environment variations, then fine-tunes a
large population of specialists with weights cloned from the
generalist, each trained using RL to master a selected small
subset of variations. Finally, GSL uses these specialists
to collect demonstrations and employs DAPG for the IL
part to train a generalist. For a fair comparison, we adopt
PPO [8] for the RL part and DAPG [6] for the IL part in
our implementation.

UniDexGrasp UniDexGrasp [11] is a two-stage learning
method. In the first state-based stage, they propose Object
Curriculum Learning (OCL), which starts RL with one
object and gradually incorporates similar objects from the
same or similar categories into the training to obtain a
state-based teacher policy. Once they obtain this teacher
policy, they use DAgger [7] to distill it to a vision-based
policy.

B. Experiment Details
As described in Sec.4, we use PPO [8] in GeoCur-

riculum learning stage to get the first generalist SG1, and
in specialist learning stage {SSi}, {VSi} to train these
specialist. In the generalist learning stages SGi(i > 1)
and V Gi, we employ our proposed DAgger-based policy
distillation. Note that we freeze the vision-backbone in the
{VSi} learning stage.

B.1. Environment Setup

State Definition The full state of the state-based policy is
denoted as SS

t = (Rt, Ot, Pt=0), while the full state of the
vision-based policy is represented as SV

t = (Rt, Pt). The
robot state Rr is detailed in Table A, and the object oracle
state Ot includes the object pose (3 degrees of freedom
for position and 9 degrees of freedom for rotation matrix),
linear velocity, and angular velocity. To accelerate the
training process, we sample only 1024 points from the
object and the hand in the scene point cloud Pt.

Parameters Description
q ∈ R18 joint positions
q̇ ∈ R18 joint velocities
τdof ∈ R24 dof force
xfinger ∈ R3×5 fingertip position
αfinger ∈ R4×5 fingertip orientation
ẋfinger ∈ R3×5 fingertip linear velocities
ωfinger ∈ R3×5 fingertip angular velocities
Ffinger ∈ R3×5 fingertip force
τfinger ∈ R3×5 fingertip torque
t ∈ R3 hand root global transition
R ∈ R3×3 hand root global orientation
a ∈ R24 action

Table A. Robot state definition.

Action Space The action space is the motor command
of 24 actuators on the dexterous hand. The first 6 motors
control the global position and orientation of the dexterous
hand and the rest 18 motors control the fingers of the hand.
We normalize the action range to (−1, 1) based on actuator
specification.

Camera Setup Similar to UniDexGrasp [11], we employ
a setup consisting of five RGBD cameras positioned around
and above the table, as shown in Fig. A. The system’s origin
is located at the center of the table, and the cameras are
positioned at ([0.5, 0, 0.05], [-0.5, 0, 0.05], [0, 0.5, 0.05],
[0, -0.05, 0.05], [0, 0, 0.55]), with their focal points set to
[0, 0, 0.05]. We fuse the partial point clouds generated by
the five cameras to one scene point cloud Pt.

Figure A. Camera positions

Reward Function: We use the non-goal-conditioned re-
ward version in UniDexGrasp [11], and we formalize it as
follows (All the ω∗ here are hyper-parameters same with
UniDexGrasp.):

The reaching reward rreach encourages the robot fingers
to reach the object. Here, xfinger and xobj denote the position



of each finger and object:

rreach = −ωr

∑
∥xfinger − xobj∥2 (4)

The lifting reward rlift encourages the robot hand to lift
the object when the fingers are close enough to the object.
f is a flag to judge whether the robot reaches the lifting
condition: f = Is(

∑
∥xfinger − xobj∥2 < λf1) + Is(dobj >

λ0). Here, dobj = ∥xobj − xtarget∥2, where xobj and xtarget are
object position and target position. az is the scaled force
applied to the hand root along the z-axis (ωl > 0).

rlift =

{
ωl ∗ (1 + az) if f = 2

0 otherwise
(5)

The moving reward rmove encourages the object to reach
the target and it will give a bonus term when the object is
lifted very closely to the target:

rmove =

{
−ωmdobj +

1
1+ωbdobj

if dobj < λ0

−ωmdobj otherwise
(6)

Finally, we add each component and formulate our re-
ward function as follows:

r = rreach + rlift + rmove (7)

B.2. Training Details

Network Architecture: The MLP used in the state-
based policy πE and the vision-based policy πS consists of
4 hidden layers (1024, 1024, 512, 512). We use the ex-
ponential linear unit (ELU) [1] as the activation function.
The network structure of the PointNet in the autoencoder is
(1024, 512, 64). We use the PointNet + Transformer back-
bone in [4] as our vision backbone, where we use different
PointNets [5] to process points having different segmenta-
tion masks (robot, object, entire point cloud). There’s also
an additional MLP to output a 256-d hidden vector for the
robot state alone. All the features from the MLP and Point-
Nets are fed into a Transformer [9]. The output vectors are
passed through global attention pooling to extract a repre-
sentation of dimension 256, which is then provided into a
final MLP with layer sizes [256, 128, feature dim] to out-
put a visual feature, that is then concatenated with the robot
state.
Hyperparameters of Training: The hyperparameters in
our experiments are listed in Tab.B.
Training time: The experiment is done on four NVIDIA
RTX 3090 Ti. The training process consists of 20,000 en-
vironment steps in the first stage of GeoCurriculum and
15,000 environment steps (for every single policy) in other
stages. It needs two days in total.

Hyperparameter Value
Num. envs (Isaac Gym, state-based) 1024
Num. envs (Isaac Gym, vision-based) 32
Env spacing (Isaac Gym) 1.5
Num. rollout steps per policy update (PPO) 8
Num. rollout steps per policy update (DAgger) 1
Num. batches per agent 4
Num. learning epochs 5
Buffer size (DAgger) 2000
Episode length 200
Saturation threshold of policy iteration 0.005
Discount factor 0.96
GAE parameter 0.95
Entropy coeff. 0.0
PPO clip range 0.2
Learning rate 0.0003
Value loss coeff. 1.0
Max gradient norm 1.0
Initial noise std. 0.8
Desired KL 0.16
Clip observations 5.0
Clip actions 1.0
Nsample 270,000
Ntrain 3200
Nclu 20
ωr 0.5
ωl 0.1
ωm 2
ωb 10

Table B. Hyperparameter for grasping policy.

C. Additional Results and Analysis

This section contains extended results of the experiment
depicted in Sec. 5.
More ablation on GeoCurriculum. We do additional
ablation experiments on the effectiveness of GeoCurricu-
lum, and the results are presented in Table C. Specifically,
we compare our proposed GeoCurriculum approach with
not using any curriculum learning and with the object-
curriculum-learning (OCL) method proposed in [11].
Our findings indicate that curriculum learning is essen-
tial for achieving success in the challenging dexterous
grasping task with large variations in object instances
and their initial poses. Moreover, we observed that our
GeoCurriculum approach, which considers the geometric
similarity of different objects and poses, outperforms the
OCL method, which only considers the category label
of objects. In addition, we do an ablation study on the
number of curriculum learning stages. For the 3-stage
GeoCurriculum, the task number is 1-100-Ntrain; for the
4-stage GeoCurriculum, the task number is 1-300-900-



Ntrain; and for the 5-stage GeoCurriculum, the task number
is 1-20-100-1000-Ntrain. We compared the performance
of SG1 for all the experiments. Since the performance
of the 5-stage GeoCurriculum is similar to that of the
4-stage GeoCurriculum, we choose the 4-stage in our main
experiment for simplicity.

Model Train(%) Test(%)
Uns. Obj.
Seen Cat. Uns. Cat.

No Curriculum 30.5 23.4 20.6
OCL[11] 79.4 74.3 70.8
GeoCurriculum (3) 81.3 75.6 73.3
GeoCurriculum (4) 82.7 76.8 74.2
GeoCurriculum (5) 82.9 76.4 74.0
Table C. Ablation study on GeoCurriculum. OCL refers to the
Object Curriculum Learning proposed in [11]. The numbers in
brackets represent the number of stages for curriculum learning.

More ablation study on iGSL For the policy distillation
method used in iterative Generlist-Specilist Learning
(iGSL), we compare our DAgger-based policy distillation
with several popular imitation learning methods, including
Behavior Cloning (we also add a value function learning
to make the process iterative), GAIL [2] and DAPG [11].
We use GeoCurriculum for all the methods and compare
the performance of SGn+1. Tab.D shows the results,
which demonstrate that our DAgger-based policy distil-
lation method significantly outperforms other methods.
Notably, our method uses the teacher checkpoint, while
other methods only use the demonstrations from the teacher.

Model Train(%) Test(%)
Uns. Obj.
Seen Cat. Uns. Cat.

BC + Value 12.4 8.6 8.4
GAIL[2] 30.7 26.9 26.0
DAPG[11] 61.4 52.6 47.9
Ours 87.9 84.3 83.1

Table D. Ablation study on the policy distillation method.

More ablation study on GiGSL We provide more ablation
results of GiGSL. First, we do ablation experiments on
the cluster number Nclu in GeoClustering. We compare
the performance of the final vision-based policy V Gn for
different Nclu. The results are in Tab.E which show that
increasing Nclu beyond a certain point does not improve
performance and may even decrease it.

Then, we compare our GeoClustering with random cluster-
ing and category label-based clustering (we evenly divide

Model Train(%) Test(%)
Uns. Obj.
Seen Cat. Uns. Cat.

0 (No specialist) 77.4 72.6 68.8
10 80.3 74.9 75.2
20 85.4 79.6 76.7
50 77.2 71.2 69.9

Table E. Ablation study on the cluster number.

all the categories into Nclu parts for a fair comparison). In
category class-based clustering, we pre-train a classification
task on all the objects and their initial poses. We then
use the feature of the second-to-last layer for clustering
and concatenate this feature to the robot state and object
state in the state-based policy learning. We compare the
performance of the final vision-based policy V Gn for
different methods. The results are shown in Tab.F.

Model Train(%) Test(%)
Uns. Obj.
Seen Cat. Uns. Cat.

Random 77.0 71.9 68.2
Category Label. 79.7 73.9 74.1
Ours 85.4 79.6 76.7

Table F. Ablation study on the pre-trained autoencoder. The
features from the encoder are used in GeoClustering in the state-
based setting.

More Results on Meta-World Here we show additional
results on Meta-World [12], a popular multi-task policy
learning benchmark. The MT-10 task consists of 10 diverse
and challenging tasks, such as opening a door or picking up
objects, that require a wide range of skills and abilities. The
MT-50 task set is an extension of the MT-10 task set and
includes 50 additional tasks that are even more complex
and diverse. The results in Tab.G demonstrate that our
proposed technique, iGSL, performs well on the multi-task
MT-10 & MT-50 and outperforms the baseline methods.

PPO[8] GSL[3] Ours
MT-10 (%) 58.4±10.1 77.5±2.9 80.3±0.5
MT-50 (%) 31.1±4.5 43.5±2.2 45.9±1.7

Table G. Addtional Experiment in Meta-World.

Additional Qualitative Grasping Results We show more
qualitative results in Fig.B and Fig.C. In Fig.B, we provide
more results about our GeoClustering in the vision-based
policy learning stage. The vision-based policy V G1 uti-
lizes its vision backbone to extract visual features of the
tasks for clustering. Due to the vision-based clustering be-



ing task-aware, we also show the grasping poses of these
tasks. The results in Fig.B demonstrate that our approach
can cluster tasks based on the object geometry, pose fea-
tures, and corresponding grasping strategy of the generalist
policy. In Fig.C, we provide several grasping trajectories
for different objects with different initial poses.
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Figure B. Qualitative Grasping Results. For each of the 4 clusters, we visualize 10 tasks and their corresponding grasping poses of the
policy. The clusters are generated by our GeoClustering in the vision-based policy learning stage.
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Figure C. Qualitative Grasping Trajecoties. We provide several grasping trajectories for different objects with different initial poses.
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