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This supplementary is organized as follows. In Sec. I,
we provide the implementation details of pseudo-labeling
filtering included in the framework of ALWOD. Afterward,
we provide additional implementation details of the auxil-
iary image generator in Sec. 2, and additional implementa-
tion details of the annotation tool in Sec. 3. In Sec. 4, we
provide additional experimental results. In Sec. 5, we pro-
vide qualitative evaluation results.

1. Pseudo-Labeling Filtering

Our semi-supervised object detector is composed of a
student detection network G*%“(X|fy;,) and a teacher de-
tection network G'?(X|0;c,). Both G**“ and G'® are
transformer-based object detectors [, 8]. We adopt Sparse
DETR [8] for both student and teacher networks since
Sparse DETR enhanced the efficiency of DETR [1] and im-
proved the detection performance on small objects datasets.
We apply both weak Uyeqr(-) and strong Ugspong(-) aug-
mentation to the data. At the initial stage (¢ = 0), we train
the student network using Upeak (S™) U Usirong (SX) as
well as the pseudo-labeled Ustmng(SO), with labels pro-
posed by G (Uear (S°)) and filtered by ¢(-):
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and L is the classification and bounding box regression loss
used in transformer-based detector [1, 8]. At the active
learning cycle (¢ > 0), we train the student network us-
ing Uyeak (8*) U Ugtrong (S*) as well as the pseudo-labeled
Ustrong (S*), with labels proposed by G***(U,eqr (S*)) and
filtered by ¢(+):
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Our pseudo-labeling filter ¢(-) supports two annotation
forms: 1) weakly annotated Y, where j € W' and 2)
fully annotated Y!, where j € F*'. The filter ¢(-) is ap-
plied to predicted bounding boxes Y and ground-truth la-
bels Uyear(Y) associated with image Useqr(X) , where
Y = G (Upear(X)) = {§r}5,, and K is the number
of object queries. We formulate the pseudo-label filtering
problem as a bipartite matching problem between Y and
Uuyear(Y) [12] using a matching function across a permu-
tation of K elements with the lowest cost as following:

K
0= argmin Z L'rrmtch (ya(k)7 Uweak (yk)); (5)

TEPK k=1

where Loatch(Fo(k)» Uwear (Yx)) is an annotation pair-
wise matching score between ground-truth label Uyeqr (Yi)
and teacher prediction § with index o (k). It is computed ef-
ficiently with the Hungarian algorithm [ [, 5]. Specifically,
for different types of annotations U eqr (Y1), we define dif-
ferent £,,,q¢cn l0ss functions.
The ground-truth label is weakly annotated. The
ground-truth label contains only the classes of objects
present in that image but not the objects’ locations, i.e.,
YY = {ye}il, = {cx}is,, where 1 < n* < C'is
the number of object classes in that image. To address the
matching problem, we first predict the count ny, of the class
Ck»

ng = max(1, [{o|prs* > 6,0 € [1, K|}|), (6)

where prék is the probability of assigning the o-th pre-
diction to class c;. The predicted count 7y is the num-
ber of predictions that pass the confidence threshold 6.
In our work, § is 0.7. Since there is at least one ob-
ject per ground-truth class, the minimal value of ny is



1. Each class ¢, will be repeated n; times, and the
total number of ground-truth labels will be ZZZI ng.

Then we find the best matched bounding boxes bs () by
ﬁmatch (yo(k)a Uweak (yk)) in Eq (5)7 where:

‘Cmatch (ya(k)a Uweak (yk)) =1- prilzk,)a (7)

where o(k) € {1,...,K}andk € {1,..., 320" ni}. Af-
ter bipartite matching, we generate the pseudo-label Vi =

{(f)g,(k), ChkyDk) kZ:21:1 "* where (k) € {1,...,K} is the
index of matched predicted box to the k-the ground-truth
label, B&( k) 1s the predicted box, ¢y is the available ground-
truth class, and p;, = prg’zk) is the pseudo label quality
score.

The ground-truth label is fully annotated. The ground-
truth label Y; = {}’k}Zil = {(bk7ck,pk)}2?il con-
tains localization bounding box by € R*, class-label
¢, € {1,...,C}, and the bounding box quality score
pe € {1,0}, for each of the n/ objects labeled in that
image. The score p; corresponds to a subjective (anno-
tator) notion of whether the bounding box by, is precise,
pr = 1, where the bounding box by, largely overlaps with
the true object (IoU > 0.9), or imprecise, pr = 0, where
0.5 < IoU < 0.9. For a precise bounding box, where
pr = 1, the pseudo label yy, is exactly the same as yy.
For an imprecise bounding box by, where p;, = 0, we first
find the best matched predicted bounding boxes lA)&(k) by
»Cmatch (ya(k)a Uweak (yk)) in Eq (5)’ where :

~

Lnatch (yo(k’)a Uweak (yk)) = Aio’u,ﬁiou(ba(k)7 bk:)
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Lo is the generalized IoU loss [ 1], Ajoy, and Az, are trade-
off parameters. In our work, A;s,, is 2 and Az, is 5. Then we
generate the final pseudo-label y;, = {(b(’;(k), ck,pk)}Zil,
where b} (k) is generated by interpolating the coordinates of

the imprecise by and the matched boxes B&( k)

2. Auxiliary Image Generator

The image generator creates synthetic images by com-
posing background images and object templates. For Re-
alPizzalQ [13] dataset, the background images include
pizza base images and table images as shown in Fig. 1.
We download ten table images and ten pizza base images
from Google, using several pizza-related hashtags. For
VOC2007 [3] and COCO2014 [6] datasets, the background
images are nature images as shown in Fig. 2. We randomly
select 300 images from the ImageNet [O] dataset, which
do not contain any classes in COCO2014 dataset. 150 of
these images are used as background images for VOC2007
dataset, and the remaining images are used as background
images for COCO2014 dataset. The object templates are

created by cropping the object instances of fully-annotated
images in A°, which are randomly selected from S°.

3. Annotation Procedure and Tool

In most object detection labeling software, the user’s task
is to, for an un-annotated image proposed by the system
(e.g., every image in a dataset, randomly selected image, or
selected by an AL algorithm), draw tight bounding boxes
around the objects to be detected, and select categories for
each bounding box. To speed up the process of labeling and
to reduce the human effort, we develop a new annotation
tool.

Each image contains a large number of predicted bound-
ing boxes with predicted class labels generated from both
the student and the teacher networks in ALWOD. We first
group all predictions into different clusters, such that the
predictions in the same cluster are overlapped the most.
In each cluster, the cluster center is the largest predicted
bounding box and the remaining predictions are fully cov-
ered by the cluster center. Subsequently, we retain the clus-
ter center predictions and discard the remaining predictions
to prevent the detection network from concentrating too
much on parts of objects instead of whole objects. Sec-
ondly, we adopt non-maximum suppression (NMS) on the
cluster center predictions based on their predicted classes.
We fix the IoU threshold for NMS at 0.75. Thirdly, we re-
move all the predicted bounding boxes that have low confi-
dence scores. The confidence score threshold is 0.3. The re-
maining predictions are saved as proposals which are given
to the annotators. The proposals generated from the teacher
network are denoted by “D3”, and the proposals generated
from the student network are denoted by “D4” in our anno-
tation tool.

All the selected images with proposals in A! are first
loaded into our annotation tool as shown in Fig. 3. At the
beginning, as shown in Fig. 4, each image includes multi-
ple proposed bounding boxes with class labels. As shown
in Fig. 5, the annotators are asked to: (1) select the bounding
boxes from proposals that overlap with true objects (> 50%
IoU) and include at least one of the four extreme points (top,
bottom, left-most, right-most), (2) correct the bounding box
categories, and (3) assess the bounding box quality: precise
or imprecise bounding boxes. The remaining unselected
bounding boxes are removed. If there is no bounding box
over an actual object, the annotators directly draw a tight
bounding box and select the object label.

The web tool allows the annotator to display certain
classes of bounding boxes as shown in Fig. 6. In this way,
it is easy to notice when one of the bounding boxes is as-
signed to the wrong category. The tool allows the user to
select multiple bounding boxes at the same time, and si-
multaneously change their categories or delete them, which
significantly speeds up corrections. Our annotation tool also
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Figure 1: Examples of table images, pizza base images, and object templates used for creating auxiliary images on Re-

alPizzal0 dataset.

allows the annotator to add new classes, when the user ob-
serves objects outside of the existing data categories.

4. Additional Results

Fig. 7 summarizes the number of objects and images for
each class on RealPizzalO dataset. In total there are 5,581
images, containing 105,781 annotated objects. In our main
paper Table 1, we summarize the detection results on three
different benchmarks. Additionally, in Tab. 1 we list the
mean AP50 over all classes and per class AP50 values of our
method and the selected baselines on RealPizzalO dataset.
As shown in Tab. 1, our method significantly boosts de-
tection performance in most classes. Based on the same
backbone, our method significantly outperforms the second
best D2DF2WOD [13]. Since pepperoni is the most fre-
quent object in RealPizzalO dataset as shown in Fig. 7, at
each active learning cycle, the selected images in A! al-
ways include pepperoni objects. Therefore, the detection
performance of pepperoni is the best compared with other
classes in active learning for object detection methods. The
detection performance of pineapple is worse compared with
other classes in active learning for object detection methods.
At the initial learning stage, the AP50 of pineapple is only
1.6% using ResNet50 backbone. There are few training im-
ages including pineapple instances, therefore the detection
network can not be fully re-trained on pineapple instances.

Our detection performance of broccoli is significantly bet-
ter than other methods since our initial detector M° learns a
good detection performance over broccoli on auxiliary im-
ages. The AP50 of broccoli is 16.6% at the initial learning
stage using ResNet50 backbone, which is higher than most
baseline methods.

In our main paper Figure 6, we summarize the detec-
tion performance across nine different active learning strate-
gies in our framework on RealPizzal(O dataset. Addition-
ally, in Fig. 8 we investigate the detection performance
of each class under different acquisition functions on Re-
alPizzalQ dataset using VGG16 backbone. Since core-
set [10], loss [14], and entropy-sum are worse than our
proposed acquisition functions as shown in our main pa-
per Figure 6, and our sum strategy ALWODy; for the final
fused acquisition function is worse than the product strategy
ALWOD, we do not include these active learning strategies
in Fig. 8. We include the results of SSDGMM [2] con-
sidering aleatoric and epistemic uncertainty in Fig. 8. All
the methods in Fig. 8 are using the same number of an-
notated images (5%). Fig. 8 indicates that our acquisition
function outperforms other acquisition functions by a sig-
nificant margin in most classes, and the detection perfor-
mance of each class is improved with a higher active learn-
ing stage. At the final stage, compared with the image un-
certainty score, the model disagreement score can achieve
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Figure 2: Examples of background images and object templates used for creating auxiliary images on COCO2014 dataset.

Table 1: Results (mean AP50 over all classes and per class AP50 in %) for different methods on RealPizzalO dataset. n is
the total number of fully-labeled samples and NN is the total number of samples in RealPizzalO dataset. Red figures denote
the best performing non-FSOD method and blue figures denote the second best performing non-FSOD method using the
same backbone. Our method significantly boosts detection performance in most classes. SSDGMM considers 80% or 5% of
fully-annotated RealPizzal0 data, and ALWOD considers 5% fully-annotated RealPizzal0 data.

. Mean AP50
Backbone ‘ Setting Method n/N AP50 | Pepperoni Mushroom Pepper Olive Basil Bacon Broccoli Pineapple Tomato Onion
VGG16 Faster-RCNN [7] 100% | 39.1 74.2 3.6 314 578 584 114 342 114 516 290
VGG16 Sparse DETR [¢] 100% | 41.2 79.4 396 326 568 625 168 389 7.6 534 248
ResNet50 FSOD Faster-RCNN [7] 100% | 40.2 73.9 377 293 563 564 149 438 114 500 281
ResNet50 Sparse DETR [8] 100% | 42.7 81.3 416 301 584 641 127 414 143 563 265
Swin-T Sparse DETR [£] 100% | 43.8 80.5 442 321 601 647 144 410 166 544 298
WSOD OICR[11] 0% | 47 0.2 1.3 45 01 0 88 194 11.0 10 08
WSOD CASD [4] 0% | 129 127 195 148 105 137 104 101 145 117 107
VGGI6 WSOD D2DF2WOD] | 3] 0% | 25.1 439 35.1 150 273 418 92 125 8.5 284 292
ALOD SSDGMM [2] 80% | 23.4 62.5 20.7 145 327 452 49 74 038 327 123
ALOD SSDGMM [2] 5% | 164 54.0 13.1 108 216 290 9. 0 0 246 13
ALOD ALWOD 5% | 379 78.9 38.7 164 581 550 110 402 9.8 50.1 210
ResNetso | WSOD | D2DF2WOD [13] 0% | 262 51.9 35.5 189 331 474 112 96 5.4 293 20.1
ALOD ALWOD 5% | 393 79.3 40.0 182 593 566 114 421 104 524 233
Swin-T | ALOD | ALWOD | 5% | 402 | 788 40.8 301 582 612 127 332 12.7 50.9 234
marginal improvement. At different active learning stages, certainty in Fig. 8 suggests that these two key acquisition
the impact of model disagreement and image uncertainty is scores are both effective and complementary to each other.

different. Fusing model disagreement and the image un-
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[Check 07925.xml v ] Number of images: |10
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[Check 07442.xml] 39 v basil: 11, i 1, © Keep files
[Check 07434.xmi] 44 v mushrooms:9, [ O Delete files
Check 09004.xm|‘ 39 v basil:1, ] [ Cut images |
Check 05209.xm|\ 38 v onions;12, pepp =
ICheck oﬁuzﬁ.xml\ 43 v peppers:18, = “
ICheck 03834.xml \ 35 v pepperoni:18, mushrooms:6, & “ [Add top files from list:
Check 07762.xml] 41 v basil: 18, “ INum of XMLs: | | final score v
ICheck 07260.xm|\ 42 v onions:6,
[Check 00874.xmI| 39 v bacon:8, basil:6, tomatoes:14, 2] /Add one file by name:
[Check 01172.xml| a2 7 tomatoes:12, 3 XML name:
ICheck 01096.xm|\ 40 v tomatoes:3, basil:6, Select XLM by i diontar
[Check 07285.xmi]| 42 % bacon:11, ] M :'fm" o:):‘ut yRES XIS
= [pepporoni /| o I | Add XuiLs |
Check 07037.xml] (5 v olives:4, ==
ICheck 02909.xm|‘ 41 v 17, 14, bacon:7, =]
[Check 08934.xml| 35 v peppers:16, [Total Images: o]
ICheck 0757!.xm|‘ 38 v peppers:11, tomatoes: 12, Images checked: 0
ICheck 05030.xm|‘ 35 v tomatoes:23, Images not
[Check 02145 xml| 38 <z fomatoes:9, Images OK: 0
[Check 08556.xml] 38 v bacon:6, Images skipped: |0
Check 07921.xm|‘ 39 v mushrooms: 14,
ICheck 07140.xm| ‘ 28 v tomatoes:27, 2] 2] INumber of BB for extraction
[Check 01914.xmi] 36 v tomatoes:7, olives:10, [=] [=] Synthetic m“
Check 06936.xml] 34 v tomatoes:4, onions:2, olives:4, mushrooms:1, “ generatos P
Check 04084.xmi 39 v 13, basil:3, [ [ pepperoni % o %
ICheck 0191 5.xm|\ 43 v olives:24, tomatoes:12, &} 6 0 0 6 ‘
ICheck 06115.xml| \ 44 v tomatoes:7, ] peppers 12 0 0 12 ‘
[Check 01130.xml| \ 39 v mushrooms:21, —
Check 01225.xml| 3 v bacons, olives 1 ° 0 O Fircrew ]
[Check 05344.xml]| a v tomatoes:6, 2] basil 20 0 0 B[ Findnew |
[Check 08325.xmi] 44 v olives:6, bacon:5, tomatoes:5, 3 bacon 24 0 0 24 ‘
Check 00264.me‘ 35 v tomatoes:14, onions:10, “ broceoli 24 0 0 24 ‘
ICheck 0027!.xm|‘ 38 v basil:7, = =
Check 05804.xml] 40 v basil:9, “ 2 0 ° 2 ‘
[Check 02516.xml ‘ 40 v peppers:22, [ tomatoes 12 0 0 12 ‘
Check 06824.xmi] 39 v tomatoes:1, bacon:6, onions 4 0 0 [ Findnew |
[Check 08446.xml| 38 <z peppers:11, tomatoes:3,
[Check 01360.xml] 44 v broccoliz5, onions:1, peppers:2,
[Check 05691 xml| 35 v mushrooms:7, onions:1, B
Check 05235.xm|‘ 40 v tomatoes:14,
[Check 06555.xml| 38 v broccoli:11, bacon:4, tomatoes 8, = 2]
Check 07024.xmi] 2 v 2]
[Check 05412.xmi] 43 v peppers:19, [
ICheck 00129.xm|‘ 38 v basil:2, ]
ICheck 05925.xm|\ 40 v mushrooms: 13, olives:3, bacon:1, =
Check 06742.xmi] 39 v olives:4, @
ICheck 03953.xm|\ 40 v pineapple: 19, bacon:24, = “
ICheck 02226.xm|\ 40 v peppers:3, tomatoes:12, =

Figure 3: The annotation tool presents a list of images that need to be examined by an annotator, sorted according to the final

fused acquisition score.

5. Qualitative Evaluation

5.1. Selected images with proposals at each active
learning cycle

As shown in Figs. 9 and 10, the images selected by the
model disagreement scores always include multiple redun-
dant bounding boxes (pointed to by blue arrows). Some ob-
jects in the images selected by the image uncertainty scores
are missing bounding boxes (pointed to by black arrows).
The final fused score focuses on selecting “hard” images
that even the human labelers cannot easily annotate. Also,
we observe that at the fourth active learning cycle, the pro-
posals improve in localization precision, which increases
the number of precise annotations and reduces the anno-
tation cost.

5.2. Detection performance

Fig. 11 illustrates the detection results produced by
ALWOD, D2DF2WOD [13] and SSDGMM [2] on Re-
alPizzal0 dataset at the last active learning cycle. There, it
can be observed that our method does not only locate most

objects, but that it also produces more accurate bounding
boxes.
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Selected: 0
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Figure 4: Image with predictions generated by Gyeq (-|05,1) and Gy, (-6%,1) networks, filtered by clustering, NMS and the
confidence score threshold. The predictions generated from the teacher network are denoted by “D3”, and the predictions
generated from the student network are denoted by “D4” in our annotation tool.

y-Supervised Object Detection [Back to XMLlist | [ Add new category
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(M) - Select D3 and D4
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Submitand raiosd | Skipimage ] (D) - Delete Bounding box

Figure 5: Image with annotations after (1) manually correcting the object classes, (2) removing unselected bounding boxes,
and (3) adding new object bounding boxes. Newly added bounding boxes are marked in black.



Figure 6: The annotator checks all the bounding boxes predicted as basil, when they click the basil button at the right side of

interface (purple).
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Figure 7: Statistics of RealPizzal0 dataset: (a) the number of images, (b) the number of instances.



Pepperoni Mushroom Pepper

804 4 arwopn 40 { —— Awopn
—4— Image uncertainty —4— Image uncertainty 20+
—— Model disagreement 35 { —— Model disagreement
70|/ ¥ Random —— Random
—— Aleatoric + Epistemic 30 { —— Aleatoric + Epistemic s
= 225 _
8 8 2
5% b 3
g g% 2 104
< < <
15
50 —— ALWODn
10 54 —— Image uncertainty
—— Model disagreement
w© 5 —— Random
5 o —— Aleatoric + Epistemic
0 1 2 3 3 0 1 2 3 4 0 1 2 3 4
Active learning cycle t Active learning cycle t Active learning cycle t
Olive Basil Bacon
12
60 —— ALwopn —— ALwoDp
551 4~ Image uncertainty —4— Image uncertainty
—— Model disagreement 10 { —— Model disagreement
s0 501 4 Random —— Random
—— Aleatoric + Epistemic —— Aleatoric + Epistemic
45 8
—— ALWODp
g —}— Image uncertainty 240 = -
2 —— Model disagreement 2 2
% —+ Random %35 %
30 —— Aleatoric + Epistemic 4
30
24
20 25
20
04
0 1 2 3 4 0 1 2 3 4 o 1 2 3 4
Active learning cycle t Active learning cycle t Active learning cycle t
Broccoli Pineapple Tomato
—— ALWODp —— ALWODp —— ALWODn
409 4 Image uncertainty 104 4 Image uncertainty 50 { —— Image uncertainty
—— Model disagreement —— Model disagreement —— Model disagreement
—— Random . —— Random 45 { —+ Random
20 —— Aleatoric + Epistemic —— Aleatoric + Epistemic —— Aleatoric + Epistemic
20 4
g g0 g
o p=d =135
220 2 2
S & S
4 30 4
10 25
2
204
0 0 + +
T T T T T 15
o 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Active learning cycle t Active learning cycle t Active learning cycle t
Onion
—— ALWODn
—}— Image uncertainty
204 —¥ Model disagreement
—— Random
—— Aleatoric + Epistemic
154
g
o
2
K
101
5

Active learning cycle t
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backbone.
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Figure 9: Example images in A! on RealPizzal0 dataset. Each image includes the proposals before checked by annotators.
The images selected by the model disagreement scores always include multiple redundant bounding boxes (pointed to by
blue arrows). Some objects in the images selected by image uncertainty scores are missing bounding boxes (pointed to by
black arrows). The final score focuses on selecting “hard” images, which are even challenging for the human annotators.
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Figure 10: Example images in A* on RealPizzal0 dataset. Each image includes the proposals before checked by annotators.
Compared to the images in A', the images in A* are characterized by higher quality proposals.



SSDGMM

Figure 11: Examples of successful cases for ALWOD vs. D2DF2WOD vs. SSDGMM in the test set of RealPizzal0 dataset.
We only show instances with scores over 0.5 to maintain visibility. It can observed that our method does not only locate most
objects, but that it also produces more accurate bounding boxes compared with other baselines.
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