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This supplementary is organized as follows. In Sec. 1,
we provide the implementation details of pseudo-labeling
filtering included in the framework of ALWOD. Afterward,
we provide additional implementation details of the auxil-
iary image generator in Sec. 2, and additional implementa-
tion details of the annotation tool in Sec. 3. In Sec. 4, we
provide additional experimental results. In Sec. 5, we pro-
vide qualitative evaluation results.

1. Pseudo-Labeling Filtering
Our semi-supervised object detector is composed of a

student detection network Gstu(X|θstu) and a teacher de-
tection network Gtea(X|θtea). Both Gstu and Gtea are
transformer-based object detectors [1, 8]. We adopt Sparse
DETR [8] for both student and teacher networks since
Sparse DETR enhanced the efficiency of DETR [1] and im-
proved the detection performance on small objects datasets.
We apply both weak Uweak(·) and strong Ustrong(·) aug-
mentation to the data. At the initial stage (t = 0), we train
the student network using Uweak(SX) ∪ Ustrong(SX) as
well as the pseudo-labeled Ustrong(S

0), with labels pro-
posed by Gtea(Uweak(S

0)) and filtered by ϕ(·):

θ0stu ← min
∑

(X,Y)∈T 0

L(Gstu(X|θstu),Y), (1)

where

T 0 = Uweak(SX)∪Ustrong(SX)∪ ϕ(Gtea(Uweak(S
0))),

(2)
and L is the classification and bounding box regression loss
used in transformer-based detector [1, 8]. At the active
learning cycle (t > 0), we train the student network us-
ing Uweak(St)∪Ustrong(St) as well as the pseudo-labeled
Ustrong(S

t), with labels proposed by Gtea(Uweak(S
t)) and

filtered by ϕ(·):

θtstu ← min
∑

(X,Y)∈T t

L(Gstu(X|θstu),Y), (3)

where

T t = Uweak(St) ∪Ustrong(St) ∪ ϕ(Gtea(Uweak(S
t))).

(4)
Our pseudo-labeling filter ϕ(·) supports two annotation

forms: 1) weakly annotated Yw
j , where j ∈ W t and 2)

fully annotated Yf
j , where j ∈ F t. The filter ϕ(·) is ap-

plied to predicted bounding boxes Ŷ and ground-truth la-
bels Uweak(Y) associated with image Uweak(X) , where
Ŷ = Gtea(Uweak(X)) = {ŷk}Kk=1, and K is the number
of object queries. We formulate the pseudo-label filtering
problem as a bipartite matching problem between Ŷ and
Uweak(Y) [12] using a matching function across a permu-
tation of K elements with the lowest cost as following:

σ̂ = argmin
σ∈℘K

K∑
k=1

Lmatch(ŷσ(k),Uweak(yk)), (5)

where Lmatch(ŷσ(k),Uweak(yk)) is an annotation pair-
wise matching score between ground-truth label Uweak(yk)
and teacher prediction ŷ with index σ(k). It is computed ef-
ficiently with the Hungarian algorithm [1, 5]. Specifically,
for different types of annotations Uweak(yk), we define dif-
ferent Lmatch loss functions.
The ground-truth label is weakly annotated. The
ground-truth label contains only the classes of objects
present in that image but not the objects’ locations, i.e.,
Yw

j = {yk}n
w

k=1 = {ck}n
w

k=1, where 1 ≤ nw ≤ C is
the number of object classes in that image. To address the
matching problem, we first predict the count nk of the class
ck,

nk = max(1, |{o|prcko > δ, o ∈ [1,K]}|), (6)

where prcko is the probability of assigning the o-th pre-
diction to class ck. The predicted count nk is the num-
ber of predictions that pass the confidence threshold δ.
In our work, δ is 0.7. Since there is at least one ob-
ject per ground-truth class, the minimal value of nk is



1. Each class ck will be repeated nk times, and the
total number of ground-truth labels will be

∑nw

k=1 nk.
Then we find the best matched bounding boxes b̂σ̂(k) by
Lmatch(ŷσ(k),Uweak(yk)) in Eq. (5), where:

Lmatch(ŷσ(k),Uweak(yk)) = 1− prckσ(k), (7)

where σ(k) ∈ {1, . . . ,K} and k ∈ {1, . . . ,
∑nw

k=1 nk}. Af-
ter bipartite matching, we generate the pseudo-label ỹk =

{(b̂σ̂(k), ck, pk)}
∑nw

k=1 nk

k=1 , where σ̂(k) ∈ {1, . . . ,K} is the
index of matched predicted box to the k-the ground-truth
label, b̂σ̂(k) is the predicted box, ck is the available ground-
truth class, and pk = prckσ̂(k) is the pseudo label quality
score.
The ground-truth label is fully annotated. The ground-
truth label Yf

j = {yk}n
f

k=1 = {(bk, ck, pk)}n
f

k=1 con-
tains localization bounding box bk ∈ R4, class-label
ck ∈ {1, . . . , C}, and the bounding box quality score
pk ∈ {1, 0}, for each of the nf objects labeled in that
image. The score pk corresponds to a subjective (anno-
tator) notion of whether the bounding box bk is precise,
pk = 1, where the bounding box bk largely overlaps with
the true object (IoU ≥ 0.9), or imprecise, pk = 0, where
0.5 < IoU < 0.9. For a precise bounding box, where
pk = 1, the pseudo label ỹk is exactly the same as yk.
For an imprecise bounding box bk, where pk = 0, we first
find the best matched predicted bounding boxes b̂σ̂(k) by
Lmatch(ŷσ(k),Uweak(yk)) in Eq. (5), where :

Lmatch(ŷσ(k),Uweak(yk)) = λiouLiou(b̂σ(k),bk)

+λL1 ||b̂σ(k) − bk||1,
(8)

Liou is the generalized IoU loss [1], λiou and λL1 are trade-
off parameters. In our work, λiou is 2 and λL1

is 5. Then we
generate the final pseudo-label ỹk = {(b∗

σ̂(k), ck, pk)}
nf

k=1,
where b∗

σ̂(k) is generated by interpolating the coordinates of

the imprecise bk and the matched boxes b̂σ̂(k).

2. Auxiliary Image Generator
The image generator creates synthetic images by com-

posing background images and object templates. For Re-
alPizza10 [13] dataset, the background images include
pizza base images and table images as shown in Fig. 1.
We download ten table images and ten pizza base images
from Google, using several pizza-related hashtags. For
VOC2007 [3] and COCO2014 [6] datasets, the background
images are nature images as shown in Fig. 2. We randomly
select 300 images from the ImageNet [9] dataset, which
do not contain any classes in COCO2014 dataset. 150 of
these images are used as background images for VOC2007
dataset, and the remaining images are used as background
images for COCO2014 dataset. The object templates are

created by cropping the object instances of fully-annotated
images in A0, which are randomly selected from S0.

3. Annotation Procedure and Tool
In most object detection labeling software, the user’s task

is to, for an un-annotated image proposed by the system
(e.g., every image in a dataset, randomly selected image, or
selected by an AL algorithm), draw tight bounding boxes
around the objects to be detected, and select categories for
each bounding box. To speed up the process of labeling and
to reduce the human effort, we develop a new annotation
tool.

Each image contains a large number of predicted bound-
ing boxes with predicted class labels generated from both
the student and the teacher networks in ALWOD. We first
group all predictions into different clusters, such that the
predictions in the same cluster are overlapped the most.
In each cluster, the cluster center is the largest predicted
bounding box and the remaining predictions are fully cov-
ered by the cluster center. Subsequently, we retain the clus-
ter center predictions and discard the remaining predictions
to prevent the detection network from concentrating too
much on parts of objects instead of whole objects. Sec-
ondly, we adopt non-maximum suppression (NMS) on the
cluster center predictions based on their predicted classes.
We fix the IoU threshold for NMS at 0.75. Thirdly, we re-
move all the predicted bounding boxes that have low confi-
dence scores. The confidence score threshold is 0.3. The re-
maining predictions are saved as proposals which are given
to the annotators. The proposals generated from the teacher
network are denoted by “D3”, and the proposals generated
from the student network are denoted by “D4” in our anno-
tation tool.

All the selected images with proposals in At are first
loaded into our annotation tool as shown in Fig. 3. At the
beginning, as shown in Fig. 4, each image includes multi-
ple proposed bounding boxes with class labels. As shown
in Fig. 5, the annotators are asked to: (1) select the bounding
boxes from proposals that overlap with true objects (> 50%
IoU) and include at least one of the four extreme points (top,
bottom, left-most, right-most), (2) correct the bounding box
categories, and (3) assess the bounding box quality: precise
or imprecise bounding boxes. The remaining unselected
bounding boxes are removed. If there is no bounding box
over an actual object, the annotators directly draw a tight
bounding box and select the object label.

The web tool allows the annotator to display certain
classes of bounding boxes as shown in Fig. 6. In this way,
it is easy to notice when one of the bounding boxes is as-
signed to the wrong category. The tool allows the user to
select multiple bounding boxes at the same time, and si-
multaneously change their categories or delete them, which
significantly speeds up corrections. Our annotation tool also
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Figure 1: Examples of table images, pizza base images, and object templates used for creating auxiliary images on Re-
alPizza10 dataset.

allows the annotator to add new classes, when the user ob-
serves objects outside of the existing data categories.

4. Additional Results
Fig. 7 summarizes the number of objects and images for

each class on RealPizza10 dataset. In total there are 5,581
images, containing 105,781 annotated objects. In our main
paper Table 1, we summarize the detection results on three
different benchmarks. Additionally, in Tab. 1 we list the
mean AP50 over all classes and per class AP50 values of our
method and the selected baselines on RealPizza10 dataset.
As shown in Tab. 1, our method significantly boosts de-
tection performance in most classes. Based on the same
backbone, our method significantly outperforms the second
best D2DF2WOD [13]. Since pepperoni is the most fre-
quent object in RealPizza10 dataset as shown in Fig. 7, at
each active learning cycle, the selected images in At al-
ways include pepperoni objects. Therefore, the detection
performance of pepperoni is the best compared with other
classes in active learning for object detection methods. The
detection performance of pineapple is worse compared with
other classes in active learning for object detection methods.
At the initial learning stage, the AP50 of pineapple is only
1.6% using ResNet50 backbone. There are few training im-
ages including pineapple instances, therefore the detection
network can not be fully re-trained on pineapple instances.

Our detection performance of broccoli is significantly bet-
ter than other methods since our initial detector M0 learns a
good detection performance over broccoli on auxiliary im-
ages. The AP50 of broccoli is 16.6% at the initial learning
stage using ResNet50 backbone, which is higher than most
baseline methods.

In our main paper Figure 6, we summarize the detec-
tion performance across nine different active learning strate-
gies in our framework on RealPizza10 dataset. Addition-
ally, in Fig. 8 we investigate the detection performance
of each class under different acquisition functions on Re-
alPizza10 dataset using VGG16 backbone. Since core-
set [10], loss [14], and entropy-sum are worse than our
proposed acquisition functions as shown in our main pa-
per Figure 6, and our sum strategy ALWODΣ for the final
fused acquisition function is worse than the product strategy
ALWODΠ, we do not include these active learning strategies
in Fig. 8. We include the results of SSDGMM [2] con-
sidering aleatoric and epistemic uncertainty in Fig. 8. All
the methods in Fig. 8 are using the same number of an-
notated images (5%). Fig. 8 indicates that our acquisition
function outperforms other acquisition functions by a sig-
nificant margin in most classes, and the detection perfor-
mance of each class is improved with a higher active learn-
ing stage. At the final stage, compared with the image un-
certainty score, the model disagreement score can achieve
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Figure 2: Examples of background images and object templates used for creating auxiliary images on COCO2014 dataset.

Table 1: Results (mean AP50 over all classes and per class AP50 in %) for different methods on RealPizza10 dataset. n is
the total number of fully-labeled samples and N is the total number of samples in RealPizza10 dataset. Red figures denote
the best performing non-FSOD method and blue figures denote the second best performing non-FSOD method using the
same backbone. Our method significantly boosts detection performance in most classes. SSDGMM considers 80% or 5% of
fully-annotated RealPizza10 data, and ALWOD considers 5% fully-annotated RealPizza10 data.

Backbone Setting Method n/N
Mean AP50
AP50 Pepperoni Mushroom Pepper Olive Basil Bacon Broccoli Pineapple Tomato Onion

VGG16

FSOD

Faster-RCNN [7] 100% 39.1 74.2 31.6 31.4 57.8 58.4 11.4 34.2 11.4 51.6 29.0
VGG16 Sparse DETR [8] 100% 41.2 79.4 39.6 32.6 56.8 62.5 16.8 38.9 7.6 53.4 24.8

ResNet50 Faster-RCNN [7] 100% 40.2 73.9 37.7 29.3 56.3 56.4 14.9 43.8 11.4 50.0 28.1
ResNet50 Sparse DETR [8] 100% 42.7 81.3 41.6 30.1 58.4 64.1 12.7 41.4 14.3 56.3 26.5
Swin-T Sparse DETR [8] 100% 43.8 80.5 44.2 32.1 60.1 64.7 14.4 41.0 16.6 54.4 29.8

VGG16

WSOD OICR [11] 0% 4.7 0.2 1.3 4.5 0.1 0 8.8 19.4 11.0 1.0 0.8
WSOD CASD [4] 0% 12.9 12.7 19.5 14.8 10.5 13.7 10.4 10.1 14.5 11.7 10.7
WSOD D2DF2WOD[13] 0% 25.1 43.9 35.1 15.0 27.3 41.8 9.2 12.5 8.5 28.4 29.2
ALOD SSDGMM [2] 80% 23.4 62.5 20.7 14.5 32.7 45.2 4.9 7.4 0.8 32.7 12.3
ALOD SSDGMM [2] 5% 16.4 54.0 13.1 10.8 21.6 29.0 9.1 0 0 24.6 1.3
ALOD ALWOD 5% 37.9 78.9 38.7 16.4 58.1 55.0 11.0 40.2 9.8 50.1 21.0

ResNet50 WSOD D2DF2WOD [13] 0% 26.2 51.9 35.5 18.9 33.1 47.4 11.2 9.6 5.4 29.3 20.1
ALOD ALWOD 5% 39.3 79.3 40.0 18.2 59.3 56.6 11.4 42.1 10.4 52.4 23.3

Swin-T ALOD ALWOD 5% 40.2 78.8 40.8 30.1 58.2 61.2 12.7 33.2 12.7 50.9 23.4

marginal improvement. At different active learning stages,
the impact of model disagreement and image uncertainty is
different. Fusing model disagreement and the image un-

certainty in Fig. 8 suggests that these two key acquisition
scores are both effective and complementary to each other.



Figure 3: The annotation tool presents a list of images that need to be examined by an annotator, sorted according to the final
fused acquisition score.

5. Qualitative Evaluation
5.1. Selected images with proposals at each active

learning cycle

As shown in Figs. 9 and 10, the images selected by the
model disagreement scores always include multiple redun-
dant bounding boxes (pointed to by blue arrows). Some ob-
jects in the images selected by the image uncertainty scores
are missing bounding boxes (pointed to by black arrows).
The final fused score focuses on selecting “hard” images
that even the human labelers cannot easily annotate. Also,
we observe that at the fourth active learning cycle, the pro-
posals improve in localization precision, which increases
the number of precise annotations and reduces the anno-
tation cost.

5.2. Detection performance

Fig. 11 illustrates the detection results produced by
ALWOD, D2DF2WOD [13] and SSDGMM [2] on Re-
alPizza10 dataset at the last active learning cycle. There, it
can be observed that our method does not only locate most

objects, but that it also produces more accurate bounding
boxes.



Figure 4: Image with predictions generated by Gtea(·|θk−1
tea ) and Gstu(·|θk−1

stu ) networks, filtered by clustering, NMS and the
confidence score threshold. The predictions generated from the teacher network are denoted by “D3”, and the predictions
generated from the student network are denoted by “D4” in our annotation tool.

Figure 5: Image with annotations after (1) manually correcting the object classes, (2) removing unselected bounding boxes,
and (3) adding new object bounding boxes. Newly added bounding boxes are marked in black.



Figure 6: The annotator checks all the bounding boxes predicted as basil, when they click the basil button at the right side of
interface (purple).

(a) Number of Images (b) Number of Instances

Figure 7: Statistics of RealPizza10 dataset: (a) the number of images, (b) the number of instances.



Figure 8: Per class detection performance across different active learning strategies on RealPizza10 dataset using VGG16
backbone.
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Figure 9: Example images in A1 on RealPizza10 dataset. Each image includes the proposals before checked by annotators.
The images selected by the model disagreement scores always include multiple redundant bounding boxes (pointed to by
blue arrows). Some objects in the images selected by image uncertainty scores are missing bounding boxes (pointed to by
black arrows). The final score focuses on selecting “hard” images, which are even challenging for the human annotators.
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Figure 10: Example images in A4 on RealPizza10 dataset. Each image includes the proposals before checked by annotators.
Compared to the images in A1, the images in A4 are characterized by higher quality proposals.
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Figure 11: Examples of successful cases for ALWOD vs. D2DF2WOD vs. SSDGMM in the test set of RealPizza10 dataset.
We only show instances with scores over 0.5 to maintain visibility. It can observed that our method does not only locate most
objects, but that it also produces more accurate bounding boxes compared with other baselines.
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