
Supplementary Material
CBA: Improving Online Continual Learning via Continual Bias Adaptor

Quanziang Wang1 Renzhen Wang1* Yichen Wu2 Xixi Jia3 Deyu Meng1,4*

1 Xi’an Jiaotong University 2 City University of Hong Kong 3 Xidian University
4 Macau University of Science and Technology

quanziangwang@gmail.com, {rzwang, dymeng}@xjtu.edu.cn

A. Details of the Bi-level Optimization
In this section, we first review the proposed bi-level

learning framework to optimize the parameters of the clas-
sifier network and the Continual Bias Adaptor (CBA) mod-
ule. Formally, the bi-level optimization problem can be for-
mulated as

min
ω

Lbuf
(
Bbuf ; fθ(ω)

)
s.t. θ(ω) = argmin

θ
Ltrn (Btrn;Fθ,ω

)
.

(8)

We use a nested gradient-optimization-based method to up-
date the classifier network parameter θ and the CBA param-
eter ω. Specifically, in the inner loop, the updating formu-
lation of θ at iteration step k can be expressed as

θk+1(ω) = θk − α · ∇θLtrn (Btrn;Fθk,ωk

)
, (9)

where α > 0 is the learning rate of the inner loop.
Then we present details of the updating formulation of

the CBA parameter ω in the outer loop. The updating of ω
can be represented as

ωk+1 = ωk − β · ∇ωLbuf
(
Bbuf ; fθk+1(ω)

)
, (10)

where β > 0 is the learning rate. In Eq. (10), the derivation
term can be represented as

∇ωLbuf
(
Bbuf ; fθk+1(ω)

)
=

∂Lbuf
(
Bbuf ; fθk+1(ω)

)
∂θk+1(ω)

∂θk+1(ω)

∂ω

=
∂Lbuf

(
Bbuf ; fθk+1(ω)

)
∂θk+1(ω)

∂

∂ω

(
−α

∂Ltrn
(
Btrn;Fθk,ωk

)
∂θ

)

= −α
∂Lbuf

(
Bbuf ; fθk+1(ω)

)
∂θk+1(ω)

∂2Ltrn
(
Btrn;Fθk,ωk

)
∂ω∂θ

.

(11)

Obviously, the update of ω introduces a second-order
derivation that can be easily implemented by PyTorch [31].

*Corresponding author

To alleviate the calculation burden of this second-order
derivation in Eq. (11), we assume that this derivation only
depends on the parameter of the last linear classification
layer rather than the whole classifier network like ResNet-
18. The linear classification layer only introduces a small
number of parameters which can significantly speed up the
computation and makes our bi-level optimization efficient
and suitable for online CL. The detailed experiments are
shown in Appendix D.4.

B. Proof of Theorem 1
Proof. The bi-level learning framework is represented as
Eq. (8). If the inner optimization problem is approximated
by one-step gradient descent by Eq. (9), the (k+1)th itera-
tion becomes

min
ω

Lbuf
(
Bbuf ; fθk+1(ω)

)
s.t. θk+1(ω) = θk(ω)− α

∂Ltrn
(
Btrn;Fθk,ω

)
∂θk

.

(12)

For simplicity in this proof, we omit the dataset of each
loss function, i.e., the training loss of the inner and outer
loop can be reformulated as Lbuf

(
fθ(ω)

)
and Ltrn (Fθ,ω),

respectively.
Assume that the outer-loop training loss function

Lbuf
(
fθ(ω)

)
is η gradient Lipschitz w.r.t θ, then we have

Lbuf (fθk+1(ω)

)
≤Lbuf (fθk(ω)

)
+

〈
∂Lbuf

(
fθk(ω)

)
∂θk

, θk+1(ω)− θk(ω)

〉

+
η

2

∥∥∥θk+1(ω)− θk(ω)
∥∥∥2

=Lbuf (fθk(ω)

)
+

〈
∂Lbuf

(
fθk(ω)

)
∂θk

,−α
∂Ltrn

(
Fθk,ω

)
∂θk

〉

+
η

2

∥∥∥∥∥α∂Ltrn
(
Fθk,ω

)
∂θk

∥∥∥∥∥
2

.

(13)



The update of ω by SGD as

ωk+1 = ωk − β
∂Lbuf

(
fθ(ω)

)
∂ωk

,

which aims to decrease the objective Lbuf
(
fθ(ω)

)
such that

Lbuf
(
fθk+1(ω)

)
≤ Lbuf

(
fθk(ω)

)
. According to Eq. (13),

one obtains that〈
∂Lbuf

(
fθk(ωk+1)

)
∂θk

,
∂Ltrn

(
Fθk,ωk+1

)
∂θk

〉

≥ αη

2

∥∥∥∥∥∂Ltrn
(
Fθk,ωk+1

)
∂θk

∥∥∥∥∥
2

2

,

(14)

where α > 0 is the inner-loop learning rate and η > 0 is
the Lipschitz constant.

C. Details of Experiments

C.1. Comparison Methods

We herein detail the four baselines: ER, DER++ [7],
RAR [41], and CLSER [4]; and five state-of-the-art com-
parison methods presented in the main text: iCaRL [33],
LUCIR [20], BiC [39], ER-ACE [8], and SS-IL [1].

• ER is the most commonly used baseline in the con-
tinual learning problem, which has been introduced in
Sec. 3.1.

• DER++ [7] additionally saves the output logits in the
memory buffer and utilizes an additional logit distilla-
tion to further prevent forgetting the previously learned
knowledge, which is another simple yet strong and ef-
fective baseline.

• RAR [41] applies random augmentation to prevent
overfitting on the memory buffer samples, which is
also a plug-and-play strategy that can be used for many
rehearsal-based CL methods. In our experiments, we
apply RAR on DER++ which is also noted as RAR for
simplicity.

• CLSER [4] involves a stable network and a plastic net-
work to consolidate the previous knowledge and learn
recent experiences, respectively.

• iCaRL [33] replaces the linear classifier as the near-
est class mean (NCM) classifier during inference and
chooses samples that are close to class means as the
memory buffer. This buffer management strategy fa-
cilitates the calculation of more accurate class means.
So we still use this strategy for a better prediction per-
formance, although the greedy algorithm does not fully
meet the online setting.

cifar10
M=0.2k M=0.5kmethod

ACC FM ACC FM
ER 52.99 29.34 57.80 21.21

ER-CBA (ours) 57.25 16.38 58.13 12.39
Gains + 4.26 -12.96 + 0.33 - 8.82

DER++ [7] 57.13 25.85 59.31 25.31
DER-CBA (ours) 57.78 12.87 60.64 11.30

Gains + 0.65 -12.98 + 1.33 -14.01
RAR [41] 53.90 31.91 56.55 27.66

RAR-CBA (ours) 56.12 16.68 58.25 12.70
Gains + 2.22 -15.23 + 1.70 -14.96

CLSER [4] 54.64 25.47 59.31 20.07
CLSER-CBA (ours) 57.88 18.36 60.62 13.14

Gains + 3.24 - 7.11 + 1.31 - 6.93

Table 6: ACC and FM of our method applied on the four
baselines under the ‘Blurry-30’ settings on Split CIFAR-10.

• LUCIR [20] proposes a weight normalization strategy
to rebalance the new and old samples. It is also cou-
pled with a cosine constraint and a margin ranking loss
for negative sample learning.

• BiC [39] splits a small balanced validation set from the
whole training data used for the second stage training.
Following the origin paper, the ratio of train/validation
split on the examples is also set as 9:1 in our experi-
ments. In the second stage, we train the bias correc-
tion layer for 250 epochs by the Adam optimizer with
a learning rate of 0.001.

• ER-ACE [8] separates the losses on the incoming new
task data and the buffered old task data and only con-
siders news classes for the denominator of CE loss on
the incoming data. This asymmetric update pushes
new classes to adapt to the older ones.

• SS-IL [1] proposes a separated softmax blocking the
flow of the gradients between the old and new classes,
which can avoid the imbalance penalization for the
new and old samples. And an additional task-specific
distillation is used on the rehearsal data.

C.2. Experiment Details

Details of the datasets. For CIFAR-10 and CIFAR-
100 [24], both of them consist of 50,000 32 × 32 RGB im-
ages for training and 10,000 test images, whereas CIFAR-
10 only contains 10 classes and CIFAR-100 contains 100
classes. We evenly split them into 5 tasks and 10 tasks in
order, respectively, which are noted as Split CIFAR-10 and
Split CIFAR-100. In addition, for the tiny-ImageNet, there
are 100,000 color images of 200 different classes cropped
as 64×64. Similarly, we split the tiny-ImageNet into 10



Method a1,5 a2,5 a3,5 a4,5 a5,5 ACC
SS-IL [1] 68.26 31.84 40.01 59.25 6.73 41.22

ER-ACE [8] 48.35 32.33 47.04 53.44 50.60 46.35
ER 28.27 26.12 31.95 46.81 78.48 42.32

ER-CBA (ours) 44.29 30.40 37.41 48.74 66.23 45.41
DER++ [7] 31.48 20.56 34.16 51.96 79.02 43.44

DER-CBA (ours) 62.88 33.25 36.98 48.69 60.39 48.44
RAR [41] 32.17 30.79 35.59 49.70 79.61 45.57

RAR-CBA (ours) 65.42 32.51 43.83 44.70 55.80 48.45
CLSER [4] 33.05 28.66 36.58 46.31 77.79 44.48

CLSER-CBA (ours) 47.48 34.95 42.82 51.85 71.08 49.63

Table 7: The t-th task accuracy at,T (t = 1, · · · , T ) after the final task (i.e., the T -th task) training on Split CIFAR-10 with
buffer size M = 0.5k.

Method a1,10 a2,10 a3,10 a4,10 a5,10 a6,10 a7,10 a8,10 a9,10 a10,10 ACC
SS-IL [1] 26.96 18.90 30.94 17.68 25.42 26.41 27.64 22.10 24.64 35.32 25.60

ER-ACE [8] 27.91 27.22 31.77 21.78 27.82 30.10 31.73 24.96 26.16 15.90 26.54
ER 19.26 19.21 22.84 13.35 17.01 20.58 21.91 14.92 14.20 64.01 22.73

ER-CBA (ours) 25.92 22.35 34.82 27.81 28.44 35.77 32.83 30.04 17.83 20.05 27.59
DER++ [7] 12.81 8.76 17.60 5.93 12.03 11.38 19.22 9.13 6.69 72.52 17.61

DER-CBA (ours) 43.40 24.60 29.07 16.33 23.66 24.06 27.92 16.99 11.96 46.72 26.47
RAR [41] 9.31 6.44 12.60 3.98 7.53 10.37 13.70 6.80 6.45 68.49 14.57

RAR-CBA (ours) 40.58 22.59 26.15 12.65 17.90 21.96 26.59 15.99 10.91 46.58 24.19
CLSER [4] 21.56 19.45 25.35 11.78 19.33 17.44 23.99 15.73 10.73 66.48 23.18

CLSER-CBA (ours) 26.21 22.02 36.89 27.87 33.85 36.80 35.60 34.12 18.17 19.36 29.09

Table 8: The t-th task accuracy at,T (t = 1, · · · , T ) after the final task (i.e., the T -th task) training on Split CIFAR-100 with
buffer size M = 5k.

tasks (i.e., Split Tiny-ImageNet), and each task contains 20
disjoint classes.

Details of experiment settings. Following [7], as we
aforementioned in Sec. 4.1, we use ResNet18 as our back-
bone and optimized by SGD optimizer with a learning rate
of 0.03. And the CBA module is updated by Adam op-
timizer where the learning rate is 0.001 for Split CIFAR-
10 and 0.01 for Split CIFAR-100 and Split Tiny-ImageNet.
The batch size is set as 32 in all experiments. Besides, the
weight of the logit distillation loss and the rehearsal loss
of the baseline DER++ [7] are fixed at 0.2 and 0.5, respec-
tively.

D. Additional Experiments
D.1. Results under ‘Blurry-30’ Setting

Since task blurry is a more challenging setting in online
CL, we further investigate another blurry setting where the
30% data of each task may appear in the other tasks, i.e.,
the ‘Blurry-30’ setting. Table 6 compiles the outcomes of

our method applied on the four baselines (i.e., ER, DER++,
RAR, and CLSER) on Split CIFAR-10 with the buffer sizes
M = 0.2k and M = 0.5k. Similar to the findings ob-
served under ‘Blurry-10’ in Table 3 of the main text, our
CBA module can consistently improve the average accuracy
and significantly alleviate forgetting of the baselines across
different buffer sizes. These results further demonstrate that
our proposed CBA is a flexible and adaptable module that
can be easily plugged into most rehearsal-based methods
under various settings.

D.2. Accuracy of Each Task

In Table 2 of the main text, we present the accuracy of
each task after the whole training process based on ER,
which demonstrates the proposed CBA module can help the
model adapt to distribution shift by consolidating the previ-
ously learned knowledge. To further illustrate it, we herein
provide more results of our CBA module applied to the four
baselines on Split CIFAR-10 (M = 0.5k, in Table 7), Split
CIFAR-100 (M = 5k, in Table 8), and Split Tiny-ImageNet
(M = 5k, in Table 9), respectively.



Method a1,10 a2,10 a3,10 a4,10 a5,10 a6,10 a7,10 a8,10 a9,10 a10,10 ACC
SS-IL [1] 16.38 16.14 16.99 25.04 19.62 19.04 17.39 16.66 12.49 25.59 18.53

ER-ACE [8] 21.65 20.38 23.25 24.94 21.36 18.39 16.38 17.85 12.74 13.44 19.04
ER 14.38 14.44 15.39 18.29 15.53 13.14 11.25 11.87 4.80 51.15 17.02

ER-CBA (ours) 21.58 18.84 24.44 25.30 20.79 18.26 18.83 18.89 11.33 23.75 20.20
DER++ [7] 7.43 9.20 9.36 10.95 9.35 7.02 5.08 7.18 1.65 55.88 12.31

DER-CBA (ours) 36.04 21.74 22.85 24.36 17.68 13.50 12.76 12.03 6.60 31.40 19.90
RAR [41] 5.32 6.48 7.42 8.54 8.19 4.52 3.64 4.67 1.18 53.97 10.39

RAR-CBA (ours) 30.71 19.69 20.85 20.45 15.63 11.76 9.28 9.39 5.23 29.92 17.29
CLSER [4] 13.80 14.05 15.99 19.43 15.60 13.26 11.64 11.37 5.84 51.81 17.28

CLSER-CBA (ours) 23.04 20.16 23.37 25.17 22.30 21.38 22.56 22.84 10.55 24.83 21.62

Table 9: The t-th task accuracy at,T (t = 1, · · · , T ) after the final task (i.e., the T -th task) training on Split Tiny-ImageNet
with buffer size M = 5k.

The results in Table 7-9 show that the proposed method
can consistently improve the four baselines ER, DER++,
RAR, and CLSER. Among these four baselines, DER++
achieves the worst performance on Split CIFAR-100 and
Split Tiny-ImageNet datasets under the online CL settings,
as it suffers from severe task-recency bias with higher accu-
racy on the new task yet lower accuracy on old tasks. How-
ever, our method outperforms DER++ by a large margin,
which indicates that it can significantly ameliorate the bias
of the baseline. Although RAR and CLSER perform better
than DER++, the two baselines still tend to classify samples
of the old tasks as those of the new task, while our proposed
CBA method can alleviate this tendency by consolidating
the old tasks.

We also compare the results with two state-of-the-art
methods, i.e., SS-IL, and ER-ACE. As shown in Table 7,
SS-IL fails to learn the new task as it pays too much atten-
tion to the previous tasks. The same finding can also be
observed in Table 8 and Table 9 for ER-ACE. Due to sup-
pressing the new task performance in SS-IL and ER-ACE,
the two methods achieve a lower FM in Table 1 (referring
to the definition of FM in Sec. 4.1). However, our method
not only retains the learned knowledge of the previous tasks
but also focuses on learning the new task knowledge which
leads to better performance.

D.3. Results of Small Buffer Sizes

In Table 1 of the main text, we have reported the re-
sults of our method under the three datasets with various
buffer sizes and demonstrated the effectiveness of the pro-
posed CBA module. In this section, we further explore the
performance of our method under some extreme scenarios,
i.e., the storage spaces are limited, leading to small buffer
sizes in the CL process. In Table 10, we further test the
performance with smaller buffer sizes, i.e., on Split CIFAR-
10 with M=100 and 50, and on Split CIFAR-100/Tiny-
ImageNet with M=200. Our method consistently outper-

forms the baseline ER for both ACC and FM, demonstrat-
ing that the proposed bi-level optimization framework re-
mains effective in alleviating task-recency bias even with
extremely small buffer sizes.

Dataset M ER ER-CBA
ACC ↑ FM ↓ ACC ↑ FM ↓

Split CIFAR-10
200 35.21 50.28 42.32 40.80
100 32.89 64.18 35.00 59.14
50 23.06 72.51 23.73 70.08

Split CIFAR-100 200 10.10 49.16 13.14 33.61
Split Tiny-ImageNet 200 6.52 43.12 7.88 32.81

Table 10: Ablation analysis on small buffer sizes.

D.4. Computation and GPU Memory

Table 11 lists the training cost on NVIDIA GeForce RTX
2080 Ti, and it shows that our approach only increases ap-
proximately 100 Mb GPU memory and takes no more than
2 seconds extra training time compared with the baselines
since it only needs to unroll the gradient of the linear clas-
sification layer to update a few hyper-parameters ϕ in the
outer-loop update (lines 426-450 in the main text). Besides,
our approach involves no extra overhead compared with the
baselines in the test stage. We will add a related discussion
in the revision.

Method Params (×106) GPU memory (Mb) Training time† (s)
ER 11.174 1517 27.87

ER-CBA 11.179 1615 29.74
DER++ [7] 11.174 1665 39.52
DER-CBA 11.179 1779 40.03

Table 11: Computation and memory on Split CIFAR-10
with M=0.2k. †: the average training time for each task.



D.5. Effect of Batch Sizes

In this section, we perform an additional ablation study
about the effectiveness of different batch sizes to show that
the performance gain of our method does not come from the
extra batch of replaying data in the outer-loop update but
from our advanced model. To this end, we show in detail
the batch sizes used in the inner-loop (Btrn) and outer-loop
(Bbuf ) for each setup in Table 12, where (a) the baseline
ER only use replay data in Btrn while (b) the proposed ER-
CBA uses another replaying batch in Bbuf . In order to ad-
dress this concern, we keep the same amount of replay data
with ER (only 32) and introduce two variants (ER-CBA∗) in
which the inner- and outer-loop updates share a single batch
of 32 samples from the memory buffer. Specifically, we se-
lect 16 and 8 samples as Bbuf for the outer loop, as shown in
Table 12 (c) (16+16) and (d) (24+8). The results show that
even with the same amount of replay batch with ER, ER-
CBA∗ does not degrade performance compared with ER-
CBA, indicating the effectiveness of our method does not
attribute to the additional replay batch.

Method Btrn

Bbuf ACC ↑ FM ↓New task Memory buffer
(a) ER 32 32 / 35.11 50.28
(b) ER-CBA (paper) 32 32 32 37.27 41.39
(c) ER-CBA∗ 32 16 16 37.81 37.25
(d) ER-CBA∗ 32 24 8 38.12 36.74

Table 12: Effect of batch sizes on Split CIFAR-10 with
M=0.2k.


