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1. Combination with HDRA
The HRDA model trains high-resolution (xd) and low-

resolution (xc) crops from source (xs) and target (xt) im-
ages simultaneously to capture both local and global fea-
tures effectively. Similarly, our base model combined with
DAFormer extracts source (xd

s and xc
s), target-to-source

(xd
t2s and xc

t2s), target (xd
t and xc

t ), and source-to-target
(xd

s2t and xc
s2t) features from the high and low-resolution

crops using an encoder. Then we apply supervised and un-
supervised losses from HRDA to the four cross-domain fea-
tures in parallel. However, given the high computation cost
of HRDA, we optimize the process by randomly selecting
between source features and target-to-source features, and
between target features and source-to-target features. This
results in only two branches of learning being conducted in-
stead of four, and we extend the training iteration by two
times for sufficient training. Finally, since we generate
pseudo-labels in a sliding window manner, we do not ap-
ply our cross-domain attention consistency loss in this case.

2. Training Computation Complexity
During training, we added a source-to-target and a

target-to-source branch of (pseudo-)supervision over the
baselines (e.g., DAFormer) (see Eq. 4) with a source and a
target branch. Our complexity is O(4LN2

) vs. DAFormer’s
O(2LN2

), where L is the number of the attention modules
and N the sequence length. Please note that the inference
cost is the same.

3. Entropy of Attention Maps
In the main paper, we claim that our attention map can

attend wider regions and learns from more diverse and in-
formative signals. We measure the entropy of attention pro-
duced by different baselines and compare it with ours. Low
entropy represents that the attention map is biased to small
regions or fewer pixels, and high entropy represents that the
attention map focuses on wider regions.

To be more specific, we calculate the average value of
entropy of attention maps extracted from the first atten-
tion module of each stage on the entire training set of
GTAV dataset as well as the validation set of the Cityscapes

Figure 1: Entropy of attention maps at each stage from baselines
and our model on the source domain (left) and the target domain
(right). Higher entropy represents that the model attends wider
regions. Our method can attend to wider regions compared to
DAFormer. Maximal represents the theoretical maximal entropy
value.

dataset. Since the length of the output sequence in MiT-B5
is always 512, the theoretical maximal entropy of an atten-
tion map is −∑ 1

512
log 1

512
≈ 6.238. As shown in Fig. 1,

our method generally produce attention maps with higher
entropy in the first two stages, while our baselines’ atten-
tion maps are comparably more sparse. Combining the vi-
sualization from Fig. 1 and Fig. 4 in the main paper, we
can confirm that our method can effectively attend larger
regions, which will be helpful to avoid spurious regions
in attention maps and helps achieve attention-level domain
adaptation. As for the attention maps from stage 3 and stage
4, we present their visualization in Fig. 2 on the same im-
ages used in Fig. 4 in the main paper. From the figure, we
may find that compared to the results from the main paper
obtained in stage 1, the attention module in stage 3 gener-
ally attends all pixels in the whole image, while that in stage
4 always attends the upper-left corner regardless of the in-
put. Such observations are also supported by the results
shown in Fig. 1 that the entropy values generally achieve
the maximal entropy value at stage 3, and plummet to the
lowest level at stage 4. We believe it is an important next
step to further investigate this behavior in future work.

4. Attention Maps Visualization

We visualize the attention maps in models with the code
adopted from the official release of TransPose [2]. Given a
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Figure 2: Attention maps from stage 3 and stage 4 from
DAFormer and our model. Generally, attention maps from stage
3 in both models attend almost all pixels in the image, while that
from stage 4 always attend only the upper-left corner.

series of attention maps {Attni
}
L
i=1 extracted from an im-

age x with a resolution of H ×W via L attention modules,
we select the attention module at the beginning of the first
stage in MiT-B5 [1] to visualize the attention maps. Each
attention map has the dimension of C ×N ×N ′, where C is
the number of features of an attention head, N is the num-
ber of the input sequence, and N ′ is the number of the out-
put sequence. To visualize the attention maps for a query
pixel from x, we at first locate its correspondence along the
dimension of the input sequence with necessary resize and
flatten operations. Then we take the average over the C
heads and acquire the final attention score with a length of
N ′, which is finally resized and upsampled to the original
shape of the image x.

5. Cross-Domain Attention Mixing
To help understand our cross-domain attention consis-

tency learning, we illustrate the pipeline with exemplar im-
ages and intermediate features from our model in Fig. 3.
For each of the input sequences to the attention module, i.e.,
each pixel from the input image, we decide whether we take
the corresponding attention maps from the source or the tar-
get domain based on the mixing mask at that position. For
example, in Fig. 3, the mixing mask M selects pixels from
the target image at point A and the source image at point
B. Correspondingly, the mixed attention maps Attnsup

take attention maps from the target image at point A, i.e.,
Attnsup[∶, ∶,A, ∶] = Attnt[∶, ∶,A, ∶] and from the source im-
age at point B, i.e., Attnsup[∶, ∶,B, ∶] = Attns[∶, ∶,B, ∶]
for supervision purposes. Moreover, to avoid forcing the
model to attend invalid regions that are occluded in the
mixed image, we create a valid mask Mv that filters out re-
gions that are from the other domain. For instance, since
point A is selected to take the pixel from the target do-
main, the valid mask Mv will mask out the supervision from
Attnsup[∶, ∶,A, ∶] on Attnm[∶, ∶,A, ∶] to the regions repre-
senting the source domain in the mixed image x̂t. On the
contrary, the valid mask Mv for point B will mask out the
supervision from Attnsup[∶, ∶,B, ∶] to Attnm[∶, ∶,B, ∶] on
the regions that take pixels from the target image.
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Figure 3: Illustration of the pipeline for our cross-domain atten-
tion consistency loss. If a point is selected by the mixing mask
M from the source domain, e.g. point B, then the mixed attention
map for supervision at that point should also be selected from the
source attention map Attnsup[∶, ∶,B, ∶] = Attns[∶, ∶,B, ∶]. On the
other hand, for a point selected from the target domain, e.g. point
A, its corresponding mixed attention map for supervision should
be selected from the target attention map Attnsup[∶, ∶,A, ∶] =
Attnt[∶, ∶,A, ∶].

5.1. Qualitative Results

We present qualitative results in Fig. 4. In these samples,
we observe that DAFormer and ours obtain higher quality
predictions over the source-only model. At the same time,
we also observe that our method generally obtains finer and
better predictions than that of DAFormer (e.g., the fence in
the first row, the traffic lights in the second row, and the road
in the third row highlighted by red boxes).
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Figure 4: Qualitative results of our method versus the source-only baseline and the DAFormer.


