Deep Equilibrium Object Detection

Shuai Wang'

Yao Teng!
!State Key Laboratory for Novel Software Technology, Nanjing University

Limin Wang'%

2Shanghai Al Lab

https://github.com/MCG-NJU/DEQDet

A. Notions and hyperparameters in DEQDet

To avoid confusion by the notions in DEQDet, we sum-
marize all symbols in Tab. 1. For the convenience of others
to reproduce the experiment in DEQDet, we also provides
the training hyper-parameters.

B. Noise projection for fixed-point

To impose the refinement jacobian matrix on the noise
term, in practice, we directly feed the noisy latent variables
into the refinement layer. Then, the gradients provided by
the noise term is equivalent to have the refinement jacobian
matrix as the multiplier. We conduct directly feeding noise
to refinement layer instead of computing jacobian, due to

* jacobian based projection is equivalent to the one step
Taylor expansion of refinement layer.

e computing jacobian matrix spends more time

* actually, as detaching position vector in object detectors
is a common practice, employing automatic differentia-
tion library to solve jacobian matrix will delivery wrong

results.
Vo =f(2,yn1+¢) (H
Oy
~ _ . 2
f(an’n 1) + ayn71 ()
=y + aii’: e € ~ N(0,02]) 3)

C. Refinement-aware gradient derivation

To handle Refinement awareness, we reformulate fixed-
point formula to a two-step unrolled fix-point to take the
query term into account:

y = I f(xy"10)0))

BXI: Corresponding author (Imwang @nju.edu.cn).

For simplicity, we define a new function h, which is the
two-step unrolled refinement layer:

h(x,y*|9) = f(X, f(X,y*|9)|9) &)

Then, the IFT gradient of Eq. (4) becomes:

ah(X, y* |9))—1 ah(X7 y* |9)
dy* a(-)

_ 8h(x7y*\9))—1
8 *

= (I - (©)

a(-)

We first replace the inverse jacobian term (/
with identity matrix I as JFB, and then we implicitly differ-
entiate two sides of Eq. (5):

Oy Ohlx.y'l8) _\p, B(xy16) 0f(x.y"16)
o) a() dy* ()
(7
then we get our refinement aware gradient:
dy” Of (x,y*10),0f(x,y*|0)
~ I+ {
() [dy*] () ®)

D. Connection between DEQ model and diffu-
sion model

There are some differences and connections between dif-
fusion model and fixed-point iterations based DEQ model, a
basic fixed -point form likes :

y=f(z,y), ©
Yn = f(7,yn-1), (10)
while diffusion [3, 4] can be derived from ode form
(ddim [4]) :
dy
— = t 11
7 = 9(@:u:1), (11)

when we make a finite integral for ode, we can get:

tn
Yn = Yn—1 +/ g(z,y,t)dt, (12)

tn—1

Yn = Yn—1 + 9($7y7t)Ata (13)

https://github.com/MCG-NJU/DEQDet

Hyperparameters Notation Value
The content vector a

The positional vector P

The condition variable / multi-scale features X

The latent variable vy = (p,q)

The parameters 0,n

The refinement layer f(x,y)

The initialization layer 9(x,y)

The deep supervision position set Q [1,3,6,9,12,20]
The number fixpoint iteration steps for training Tirain 20
The number fixpoint iteration steps for inference Tiyfer 25
The perturbation probability v 0.2
The perturbation size of content vector oq 0.1
The perturbation size of positional vector op 25
The sampling points of initialization layer 64
The sampling points of refinement layer layer 32
The learning rate 0.000025
The learning rate decay *0.1
The learning rate decay epoch for 1x training 8, 11
The learning rate decay epoch for 2x training 16, 22
weight decay for backbone 0.01
weight decay for decoder 0.1
The loss weight for focal loss Afocal 2
The loss weight for 11 loss Al 5
The loss weight for giou loss Agiou 2

Table 1: The hyper-parameters of DEQDet.

s0, it is clear that the function f(x,y) in fixed-point iteration
can be any arbitrary form, instead ode always keeps an
identity branch or residual connection. But actually we
also use identity branch in our DEQDet decoder layer. The
second difference is ode is step aware as g(z,y,t) takes
step t as input, while fixed-point iteration not.

E. Comparison with similar works

Except our method mainly focuses on fixed-point itera-
tion, others devote to migrate diffusion diagram to object
detection [1]. The remaining major difference between our
detector and DiffusionDet [1] is that our decoder consists
of only two layers, the first layers aims to get a good initial
guess while the second layer progressively refines this initial
result. Then the definition of a refinement step is also distinct.
we regard running refinement layer once as a refinement step
while their refinement step runs the entire decoder, which
consists of 6 layers.

F. Extend DEQDet to other detector

We also extend our DEQDet to sparse-RCNN [5]. we
keep the training settings e.g. training epochs, optimizer,
learning rate scheduler consistent with the original sparse-
renn, Our DEQDet improves the sparse-rcnn by 2.5 on mAP
and 3.7 on APgpan.

Detectors Params AP AP5o AP75 APs AP, AP;
Sparse R-CNN [5] 110M 45.0 63.4 48.2 26.9 47.2 59.5
+DEQDet (2x) 53M 47.0 65.7 51.6 30.3 49.8 61.0
+DEQDet (3x) 53M 47.5 66.5 52.4 30.6 50.1 61.5

Table 2: 3x training scheme with 300 queries. Extend
DEQDet to other detectors e.g. sparse-rcnn [5].

G. Refinement convergence

We evaluate our DEQDet with different refinment steps
in Tab. 3 and Tab. 4. We conduct experiments on DEQDet!
trained under 1x scheme with 100 queries and 2x scheme
with 300 queries. In Tab. 4, when DEQDet" with 300 queries
refines 5 steps, the number of valid decoder layers is as same

as AdaMixer [2], but DEQDet achieves 49.0 mAP, exceeds
AdaMixer by 2.0 mAP. As the refinement step increases, the

performance will be further improved.
GFLOPS steps AP APs5y AP75 AP, AP,, AP,

107.50 4 449 635 484 261 48.0 60.9
109.73 5 454 640 490 266 484 612
111.97 6 457 643 494 268 487 614
116.43 8 458 645 49.6 270 489 613
120.90 10 459 64.6 497 272 489 612
132.07 15 459 647 49.6 274 49.0 612
143.24 20 46.0 647 49.6 274 490 614
154.41 25 46.0 648 49.6 275 49.0 612
210.25 50 46.0 647 49.6 275 490 615

- 200 46.0 648 497 27.6 49.1 615

Table 3: Refinement steps for DEQDet! trained under 1x
scheme with ResNet50 backbone and 100 queries.

GFLOPS steps AP APso AP75 AP, AP, AP,

129.87 4 487 673 528 320 517 63.0
136.57 5 490 677 533 323 519 63.0
143.27 6 491 67.8 535 325 520 632
156.67 8 493 680 537 329 520 632
170.07 10 495 682 539 331 521 634
203.58 15 495 683 539 332 521 633
237.08 20 495 683 54.0 332 521 634
270.59 25 495 683 540 332 521 633
438.11 50 49.6 683 54.0 333 522 63.1

- 200 495 683 540 332 522 63.1

Table 4: Refinement steps for DEQDet! trained under 2x
scheme with ResNet50 backbone and 300 queries.

We try to employ off-the-shelf fixed-point solver e.g. an-
derson solver to accelerate the fixed-point solving, but the
result is not what we expected. We think this is mainly due to
the highly nonlinear property of the refinement layer and we
should couple the solver with training instead of decoupling.
We left this for our future work.

H. Detection Performance on COCO test set

We also provide the detection performance of DEQDet
models on COCO test-dev set in Tab. 6. Different from the
COCO minival set, there is no publicly avaliable labels of
test-dev.

I. Limitations

Although our DEQDet achieves comparable results with
acceptable resource consumption, the training time consump-
tion is still very large compared to other methods. As for
inference time, it is acceptable to choose refinement steps
adaptively according to resource constraints. There are also

steps AP APso AP7;5 APs AP, AP

5 489 675 531 322 518 63.1
10 492 680 53.6 329 520 63.1
20 494 682 538 329 520 634
50 495 682 539 331 522 633

5 488 675 531 322 518 633
10 492 679 535 327 520 63.1
20 493 681 537 331 520 634
50 494 681 538 331 521 633

AR RA|ODDODODND|S

Table 5: Refinement steps of Anderson Solver for EQDet!
with ResNet50 backbone and 300 queries. m is a hyperpa-
rameter in Anderson Solver.

Detectors Backbone queries AP APso AP7s APs AP, AP,
DEQDet (1x) R50 100 454 645 49.0 26.0 47.7 59.3
DEQDet" (1x) R50 100 46.5 655 504 272 489 60.2
DEQDet! (2x) R50 300 49.8 685 544 312 52.1 625
DEQDet! (2x) R101 300 50.6 694 55.1 313 533 642

Table 6: Detection Performance of DEQDet on COCO fest-
dev set, 1 x means 1x training scheme, including 12 epochs,
while 2x contains 24 epochs.

a lot of improvement space for training strategy. Also note
that the refinement layer is not light and each refinement iter-
ation is not really cheap. Future improvements can be made
from light weight refinement layer design and reduction of
refinement steps

J. Training algorithm

Algorithm 1 Noise Perturbation Code

def noise_content (content, noise_size):
""" add noise to content query """
noise = torch.randn_like (content) *

torch.norm(content, dim=-1)
noise_content = (l-noise_size)*content +
noise_sizexnoise

return noise_content

def noise_pos (pos, noise_size):
""" add noise to position query
bbox = decode (pos)
noise = torch.randn_like (bbox)
noise_bbox = bbox + noise_size*noise
noise_pos = encode (noise_bbox)
return noise_pos

wnn

References

[1] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffu-
siondet: Diffusion model for object detection. arXiv preprint
arXiv:2211.09788, 2022. 2

[2] Ziteng Gao, Limin Wang, Bing Han, and Sheng Guo.
Adamixer: A fast-converging query-based object detector. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5364-5373, 2022. 3

Algorithm 2 Training code

def train(

T , #iteration forward times
perturb_prob, # perturbation probability
content_ps, #content query perturb size
pos_ps, #position query perturb size
supervision_pos, #deep supervision positions
init_content, #[B, N, C]
init_pos, #[B, N, 4]
feats, #[B, L, C, H, W]
annotations) :

wun

B: batch

N: number of proposal boxes

wnn

solving_path = []

all_loss = 0

init_content, init_pos = initialization_layer (feats

, 1nit_content, init_pos)

supervision for initialization layer

all_loss += loss(content, pos, annotations)

extra supervision for initialization layer

in order to stablize the gradient connection

between refinement layer and initialization layer

content, pos = init_content,init_pos
for i in range(2):
content, pos = refinement_layer (

feats, content, pos)
all_loss += loss(content, pos, annotations)

naive fix-point solving...
with torch.no_grad() :
content, pos = init_content,init_pos
solving_path = []
for i in range(T):
refinement aware perturbation
1. add noise to content query
if torch.rand(l) < perturb_prob
content = noise_content (
content, content_ps
)
2. add noise to pos query
if torch.rand(l) < perturb_prob
pos = noise_pos (pos, pos_ps)
3. project noise
content, pos = refinement_layer (
feats, content, pos
)
if i in supervision_pos:
solving_path.append((content, pos)

deep supervision and gradient construction
for content, pos in solving_path:
refinement aware gradient
for i in range(2):
content, pos = \
refinement_layer (feats, content, pos)
all_loss += loss(content, pos, annotations)
return loss

[3] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840-6851, 2020. 1

[4] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. arXiv preprint arXiv:2010.02502,
2020. 1

[5] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,
Changhu Wang, et al. Sparse r-cnn: End-to-end object detec-
tion with learnable proposals. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
14454-14463, 2021. 2

