Deep Optics for Video Snapshot Compressive Imaging
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Figure 1. Our video SCI prototype.

1. Details of Our Video SCI Prototype
1.1. Optical Setup

Our video SCI prototype is shown in Fig. 1, mainly com-
posed of a prime lens, two relay lenses, an 8-bit charge cou-
pled device (CCD) camera, and a digital micro-mirror de-
vice (DMD) with an array size of 768 x 1024. The micro-
mirror size of DMD is 13.68 um x 13.68 um and the pixel
size of CCD is 5.5 um X 5.5 um. Dynamic scene is first
relayed through a prime lens and a relay lens onto an inter-
mediate plan, where DMD is employed to introduce time-
varying spatial modulation (masks) to the scene. The mod-
ulated scene is subsequently relayed to the CCD camera
through another relay lens. Magnification of the second re-
lay lens is chosen to provide approximately 1-to-1 element
mapping between the DMD and CCD. Masks with 2-by-2
element size are implemented on the DMD. The synchro-
nization between CCD and DMD is realized by an external
trigger line and the response delay between them is empiri-
cally set to 45 us.

1.2. Camera Response Function

We measure camera response function f of the used
CCD camera according to [3]. As shown in Fig. 2, there
is an approximate linearity between scene irradiance and
image intensity and thus it is modeled as f(x) = x in our
experiments.

*Corresponding author.
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Figure 2. Camera response function in our prototype.

2. Experiment Details
2.1. Testing and Re-training with Sensor Response

Sensor response is overlooked in previous works [I,

, 4, 10, 5, 6, 7, 8, 9] such that their excellent results

on simulation could generally be reproduced in real video

SCI systems. To evaluate different methods’ real perfor-

mance quantitatively, the simulated experiments are con-

ducted with an 8-bit, approximately linear, and off-the-shelf
camera and its sensor response R is modeled as

y = 255+ 0.5] /255, M

where x and y is the normalized irradiance and the normal-
ized image intensity, respectively.

During previous networks’ testing (Tab. 2) and re-
training (Tab. 3) in the main paper, global scaling which
simulates automatic aperture is performed before sensor re-
sponse to avoid measurement over-exposure (because the
over-exposured region is irreversible). Therefore, the test-
ing and re-training pipeline follows

Encoder :

y=RoH(z)/y,

2
Decoder: z =D(y), @

where v = max(#H(x)) and D denotes one of the well-
trained or re-trained networks. As a result of considering
sensor response, the captured dynamic range is severely
limited to avoid measurement overexposure. The re-trained



(a)
Figure 3. The reconstructed results of the first Windmill frame. The raw result (a) is retrieved from an 8-bit raw measurement and (b) is
a result of brightening (a). Compared with (a) and (b), a better result (c) can be retrieved from a magnified measurement.

networks in Tab. 3 of main paper are simultaneously faced
with two tasks: i) compressed video reconstruction and %)
dynamic range reconstruction, and thus lead to worse re-
sults.

Note that PSNR is susceptible to luminance distor-
tion as a metric of estimating the absolute errors between
distortion-free image and the recovered one. To evaluate
different networks’ performance of retrieving structural in-
formation, we compute PSNR (z, & /max(&) - max(z)) for
Tab. 2 and Tab. 3 in main paper (friendlier than absolute-
error based PSNR).

2.2. Dynamic Range Augmentation

As mentioned in main paper, previous reconstruction
networks for video SCI (with random binary mask) did not
consider the limited dynamic range of sensor. Taking a 10-
frame video SCI (almost 5 scene images need to be inte-
grated into a single-shot measurement image) as an exam-
ple, only about 51 pixel values are available for the video
frames given an 8-bit (256 pixel values) camera sensor.
Therefore, it is said that a serious dynamic range degrada-
tion is rooted in previous works.

When applying previous methods in a real system, the
recovered video frames are too dark as shown in Fig. 3 (a).
To address this problem, an intuitive solution is to brighten
Fig. 3 (a) into Fig. 3 (b). Another solution is to multiply
measurement by B/2 (B denotes compressed frames) after
inputting into a reconstruction network. The second solu-
tion guarantees the testing input close to the training input
in terms of value range and thus leads to a better result as
shown in Fig. 3 (c). We employ the second solution to get
the real and simulated results of previous methods in this
work.

3. More Results

Please refer to Car.avi, Windmill.avi, and
Kobe.avi files in the same path. The detailed informa-
tion is described in Tab. 1
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Table 1. Description of the attached . avi files.

Filename Real / Simulated | Compressed Ratio | Total Frames Description
) 10-frame measurement is captured using our learned

Car.avi Real 1/10 100 structural mask or widely-used random binary mask by
our video SCI prototype.
i1) 100-frame video is reconstructed using previous

Windmill.avi Real 1/10 100 SOTA STFormer or our Res2former.

#i7) The reconstructed videos are at 1/25x speed.

Kobe . avi Simulated 38 3 Considering sensor response, different methods are used toConsidering sensor response, different methods are used to

retrieve an 32-frame video from an 4-framemeasurement. retrieve an 32-frame video from an 4-frame measurement.




