
A. Qualitative Study

A.1. Coarse-to-fine Visualization

Figure 4 shows the visualization results of the coarse-
to-fine semantic matching pipeline. Given the input point
cloud, we first extract Mp = 256 proposals by the 3D object
detector. (When doing visualization, we employ the Non-
Maximum Supperssion[27] algorithm on these proposals to
filter out some duplicate or overlapping boxes.) Then we
conduct the coarse-grained candidate selection among these
proposals to get K = 8 candidates. These candidates do the
fine-grained semantic matching with the sentence query one
by one to finally produce the best-match result.

In all three cases, the coarse-grained module effectively
selects 8 candidates related to the target object (mostly be-
longing to the target category). For example, in case (b), the
sentence asks for a black chair near a table and facing the
wall. Firstly, the module filters out objects (tables, doors)
that do not belong to the target category (chair). Secondly,
with the assistance of the feature similarity matrix, the mod-
ule’s selection is also consistent with the sentence descrip-
tion (“by the table” and “facing the wall”) to some degree.

After coarse-grained selection, the reconstruction-based
semantic matching process aims to differentiate these can-
didates in a fine-grained way. We get the correct answer
in both cases (a) and (b), but we fail in case (c). Actually,
in case (c), the candidates we get do not contain the target
object. Considering that there are 32 different chairs in this
scene, it’s very likely that the 8 candidates miss the target
object since we are not expecting the coarse-grained part to
have a deep understanding of the objects in the same cate-
gory (chair). Even in such a condition, the fine-grained part
still gets the best-match chair (“near the doors”, “on the left
side”, and “near the center”) among the 8 candidates, which
demonstrates our model’s strong ability in semantic match-
ing.

B. Implementation Details

B.1. Model Setting

In this section, we give a detailed description of our
model setting. We consider the whole two-stage 3DVG
pipeline as off-the-shelf modules. In our practice, we
use the pre-trained GroupFree[22] model as the 3D ob-
ject detector, which contains a PointNet++[30] backbone,
6 layers of transformer decoder and the proposal predict
head. The proposal predict head outputs the bounding boxes
and the class predictions of Mp = 256 object propos-
als. Then we employ the same attribute encoder, textual
encoder and predict module as the supervised 3DJCG[3]
model. The attribute encoder aggregates the attribute fea-
tures (27-dimensional box center and corner coordinates
and the 128-dimensional multi-view RGB features) and the

initial object features (produced by the object detector) with
2-layer multi-head self-attention modules. The input sen-
tence query is firstly encoded by a GloVe module, and
then input to a GRU cell, which produces the text feature.
The predict module is simply a 1-layer multi-head cross-
attention module between the text feature (Key & Value)
and the object features (Query). For the reconstruct module,
We mask the input sentence with a random ratio p = 0.3.
We use NLTK to parse the sentences, and the verbs and
nouns are treated as important words. The core of the re-
construct module is a 3-layer transformer decoder. The in-
put point number Np, the proposal number Mp, and the
candidate number K are set to 50000, 256 and 8, respec-
tively. The dimension of all hidden layers is 288. When
calculating the candidates’ rewards, we find that instead of
reducing from one to zero linearly in steps of 1/(K − 1),
applying a square operation over them is better for increas-
ing the discrimination between the optimal and suboptimal
candidates.

B.2. Training and Inference

We follow the weakly supervised setting where none of
the object-sentence and bounding box annotations are used
during training. We follow [40] to use 8 sentence queries
for each scene to accelerate the training process. It takes 20
epochs to train our framework with a batch size of 12 (i.e.
there are 96 sentence queries from 12 point clouds in each
batch). For the stability of the reconstruction module, we
start its training at the second epoch and ignore the high-
est K/2 reconstruction losses after the third epoch. The
learning rate is set to 1e-3 with cosine annealing strategy.
We employ AdamW optimizer[23] with the weight decay
of 5e-4. The hyper-parameters λ1, λ2 and λ3 are set to 2, 2
and 1, respectively.



Figure 4. Visualization of the coarse-to-fine semantic matching process. With knowledge distillation, we can directly get matching result
from proposals during inference (skipping the time-consuming coarse-to-fine matching).




