
Supplementary Materials for
Distribution-Consistent Modal Recovering for Incomplete Multimodal Learning

Yuanzhi Wang, Zhen Cui∗, Yong Li∗

PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional
Information of Ministry of Education, School of Computer Science and Engineering,

Nanjing University of Science and Technology, Nanjing, China.
{yuanzhiwang, zhen.cui, yong.li}@njust.edu.cn

1. Overview
In this supplementary material, we present the details of

the normalizing flows in Sec. 2. In Sec. 3, we provide the
detailed neural network architecture as well as the hyperpa-
rameter settings in DiCMoR.

2. Details of the normalizing flows
Let us take the normalizing flow F (m) of modality

m as an example, F (m) consists of N invertible layers:
F (m) = f1 ◦ f2 ◦ · · · ◦ fN , and accordingly, (F (m))−1 =
(fN )−1 ◦ (fN−1)

−1 ◦ · · · ◦ (f1)−1. We adopt the classical
affine coupling layer [1] as the basic invertible layer. The
architecture of the basic invertible layer is shown in Fig. 1,
we assume that the input of the affine coupling layer is x
that is split into two parts along the channel axis, denoted
as xa and xb. The forward process can be formulated as:

ya = xa, yb = s× xb + t, (1)

where s and t is obtained by a complex nonlinear neural
network NN(·), as shown in Fig. 1. ya and yb are concate-
nated as the final output y of the basic invertible layer. For
the reverse process, since ya = xa, s and t can be obtained
by feeding ya into NN(·). The reverse process can be for-
mulated as:

xa = ya, xb = (yb − t)/s. (2)

By stacking several affine coupling layers, we construct a
modality-specific normalizing flow for each modality.

3. Settings in DiCMoR
Tab. 1 illustrates the network architecture and the hy-

perparameter settings in DiCMoR. We explain the involved
neural network components in DiCMoR as follows.

* The corresponding authors.
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Figure 1: The architecture of affine coupling layer.

Table 1: Hyperparameter settings in DiCMoR.

Hyperparameter CMU-MOSI CMU-MOSEI
Shallow feature extractor

Kernel size for C(m) 5 5
Hidden dimension for C(m) 32 64

Cross-modal distribution transfer
Hidden dimension for F (m) 64 128
Number of invertible layers for F (m) 32 32
Hidden dimension for D(m) 64 128
Number of RCAB for D(m) 20 20

Multimodal fusion and prediction
Hidden dimension for T (m) 32 64
Number of attention heads for T (m) 8 8
Layers of transformer for T (m) 4 6

DiCMoR mainly consists of three parts: shallow feature
extractor, cross-modal distribution transfer, and multi-
modal fusion and prediction. First, shallow feature ex-
tractor encodes multimodal shallow features X(m) via sepa-
rate 1D temporal convolutions C(m), where m ∈ {L, V,A}.
Second, we build a cross-modal distribution transfer to learn
the distribution space of each modality via normalizing
flows F (m), and conduct cross-modal distribution trans-
formation to estimate the distribution of missing modality.
Then, we use the reconstruction modules D(m) to recover



the final missed data. Each D(m) is composed of several
residual channel attention blocks (RCAB) [3], where the 2D
convolutional layers are replaced with 1D temporal convo-
lutional layers to fit the temporal features. Finally, the re-
covered modalities together with available modalities could
be jointly fed into multimodal transformers T (m) [2] for
multimodal fusion and prediction.
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