
Appendix of Domain Specified Optimization

1. Algorithm of DSO
Recalling the empirical total objective function of DSO in the following formulation:

LTotal =
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∑
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i ), (1)

Then we present detailed training procedure of DSO in Alg. 1. We note that the formulation of DRO methods in [1, 2]
implicitly models the shifted marginal distribution PU(X) via projecting the loss vector onto the divergence ball. Detailed
derivation of such technique is present in [7]. Subsequently, we calculate both the DSO and the supervised loss on the training
data PS(X). To further stabilize the training process, we sample the training data for twice (two batches), while the supervised
loss is calculated on the former batch and the DSO loss is calculated on the latter one. To calculate the DSO loss, we first
compute the projection of the loss vector on the divergence ball as {Ui}

nb

i=1. We then construct the error label by a translation
operation on YS2. Meanwhile, we calculate the scaling term α =K(D2(U∥1/nb)) by computing the χ2 divergence between
U and 1/nb (supported in many python interfaces, e.g., scipy.stats.power_divergence), where K(t) = 1.0 when t ≤ 0.2 and
K(t) = t otherwise. We fix the function K(t) throughout our experiments. Finally, the total loss is computed and the network
f is updated.

Algorithm 1 Training process of DSO
Input: The training distribution PS(X,Y), the radius parameter ρ, the deep network f parameterized by θ, the initial learning
rate as γ, the batch size number nb, the total training number of iterations as T .

for t = 1,2, . . . , T do
1: Sample {XS1

i ,YS1
i }

nb

i=1 and {XS2
i ,YS2

i }
nb

i=1 from PS ;
2: Compute the supervised loss Lsup by Lsup =

1
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∑
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i=1 ℓ(f(X
S1
i ∣ θ),Y
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i );

3: Calculate the loss vector of {XS2
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4: Compute the projection of {ℓ(f(XS2

i ∣ θ),Y
S2
i )}

nb

i=1 on the ball U1/nb
as {Ui}

nb

i=1;
5: Construct the error label Yerr

i =YS2
i + 1;

6: Calculate the scaling term α via α =K(D2(U∥1/nb));
7: Compute the DSO loss Ldso by Ldso =

α
nb
∑

nb

i=1Uiℓ(f(X
S2
i ∣ θ),Y

err
i );

8: Compute the total loss as Ltotal = Lsup +Ldso;
9: Update the network parameter by θ ← θ − γ∇θLtotal;

Output: The trained deep network f(θ).

For TDSO, since we have unauthorized features, the uncertainty set is reduced into a point PU(X). It is noteworthy that
the construction of Yerr in TDSO slightly differs from that in DSO. More specifically, TDSO first computes the pseudo-labels
Y

U

i on {XU
i }

nb

i=1 from f in Step 4, where j ∈ {1,2, . . . ,C} is the class index. TDSO then performs the translation on Y
U

i to
obtain Yerr such that the confidence of f on PU reduces.



Algorithm 2 Training process of TDSO
Input: The training distribution PS(X,Y), the unauthorized distribution PU(X) the radius parameter ρ, the deep network f
parameterized by θ, the initial learning rate as γ, the batch size number nb, the total training number of iterations as T .

for t = 1,2, . . . , T do
1: Sample {XS

i ,Y
S
i }

nb

i=1 from PS ;
2: Sample {XU

i }
nb

i=1 from PU ;
3: Compute the supervised loss Lsup by Lsup =

1
nb
∑

nb

i=1 ℓ(f(X
S
i ∣ θ),Y

S
i );

4: Compute the pseudo labels of f on {XU
i }

nb

i=1 as Y
U

i = argmaxj f(X
U
i ∣ θ);

5: Construct the error label Yerr
i =Y

U

i + 1;
7: Compute the TDSO loss Ltdso by Ltdso =

1
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∑
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i=1 ℓ(f(X
U
i ∣ θ),Y

err
i );

8: Compute the total loss as Ltotal = Lsup +Ltdso;
9: Update the network parameter by θ ← θ − γ∇θLtotal;
Output: The trained deep network f(θ).

1.1. Theoretical proof

1.2. Convergence of DSO

Following the technique in [2, 7], we derive the concentration result of our method in its dual form. More specifically, we
split the total loss function into the DSO loss and the supervised loss as follows:

{
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We first derive the concentration result of LDSO. For convenience, we denote the expected and empirical risks of LDSO in (2)
asRk(ℓ(θ);P

S) and R̂k(ℓ(θ); P̂
S), respectively. We start from the dual form ofRk(ℓ(θ);P

S) by the following lemma:
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, where the η controls the “hardness” of the sample.

The above lemma is immediately obtained from the dual lemma in [2] by multiplying sk. We then introduce two lemmas to
pave the way to the point-wise concentration:

Lemma 1.2 (Boucheron’s Inequality). Let h ∶ Rn → R be convex or concave and L-Lipschitz with respect to the ∥ ⋅ ∥2-norm.
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Lemma 1.3. Let Zi be an i.i.d. sequence of random variables with ∣Zi∣ ≤M1, then the following inequality holds:
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Then we prove the following point-wise concentration theorem that for each parameter θ ∈ Θ, Rk(ℓ(θ); P̂
S
N)

P
Ð→

Rk(ℓ(θ);P
S):



Theorem 1.4. For a fixed θ and u ≥ 0, the following inequality holds with probability 1 − 2e−u:
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where v(ρk,M1) =max ( ρk
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where above inequality (7) holds with the probability as 1 − 2e−u. Meanwhile, another inequality in Lemma 1.3 bounds the
difference between EPS

[gk(P̂
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N)] and gk(PS) as follows:

∣gk(PS) −EPS
[gk(P̂

S
N)]∣ ≤

2ρk
k

√

max(
ρk

ρk − 1
,2)M1ns

−
1

max(k∗,2) . (8)

Then we obtain the concentration results as gk(P̂S
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Equivalently, let u = t+ (1+ 1
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) logns, we obtain the final point-wise concentration bound as with probability 1− 2e−t



holds:
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We let F = {f(⋅ ∣ θ)} be the model space and equip it with the norm ∥f∥L∞ = supx f(x ∣ θ). Then we define
the ϵ-covering number of F as N(F , ξ) and assume the compactness of F such that F has a finite ξ-cover with the
covering set consisting of N(F , ξ) points. More specifically, we let N(F , ξ(u,v,ns)
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for the covering set in F , where we assume that the loss function ℓ(f(⋅ ∣ θ), ⋅) is C-Lipschitz with respect to its first parameter
f(⋅ ∣ θ) with the norm ∥ ⋅ ∥∞. Then we obtain the following theorem of the uniform convergence of DSO over parameter space
Θ:

Theorem 1.5. For u ≥ 0 and the loss function ℓ(f(⋅ ∣ θ), ⋅) that is C-Lipschitz with respect to its first parameter f(⋅ ∣ θ) with
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Proof. In order to bound the term Rk(ℓ(θ); P̂
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where the second inequality comes from that θi ∈ V (F , ξ(u,v,ns)
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Applying the Theorem 1.4 into the R.H.S in (14), we obtain the following inequality holds with probability at least 1 −
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Finally, combined with the fact that θ̂ns is the empirical risk minimizer under empirical distribution P̂S
N , we obtain the

uniform bound of the concentration process of DSO over Θ via the following inequality holds with probability at least
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where the we take inf over Θ on both sides of the inequality and the proof finishes.

We then combine the concentration result on supervised objective into Theorem 1.5 with the following lemma:

Lemma 1.6. Let ℓ(f(⋅ ∣ θ), ⋅) be C-Lipschitz with respect to the first term under ∥ ⋅ ∥∞-norm. Assume the compactness of
F = {f(⋅ ∣ θ)} with ∥ ⋅ ∥∞-norm and bounded loss with ∣ℓ(f(XS ∣ θ),YS)∣ ≤M2. Then the following inequality holds with
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Proof. We let N0 = N(F ,
√

2u
ns

M2

4C
), Lθ = EPS
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where the first inequality is due to the union bound and the second one is due to the triangle inequality with the fact that
∣∣Lfi − L̂fi ∣ − ∣Lθ − L̂θ ∣∣ ≤ 2C∥fi − θ∥∞ ≤

√
u

2ns
M2. Then we apply the Hoeffding’s inequality on the random variables

Lfi − L̂fi and obtain the final bound.

To distinguish from the DSO objectiveRk(ℓ(θ̂ns);P
S) andRk(ℓ(θ);PS , we denote the expected and empirical versions

of the total objective byRTotal and R̂N
Total, respectively:

Theorem 1.7. For u ≥ 0, the loss function ℓ(f(⋅ ∣ θ), ⋅) that is C-Lipschitz with respect to its first parameter f(⋅ ∣ θ) and
the fact that both ∣ℓ(f(XS ∣ θ),Yerr)∣ ≤M1 and ∣ℓ(f(XS ∣ θ),YS)∣ ≤M2 are bounded, the following inequality holds with
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Proof. It is directly obtained from Theorem (1.5) and Lemma (1.6).



1.3. Authorization analysis of DSO

Lemma 1.8. Assume that P and PU have the same support and ∣ℓ(f(X),Yerr)∣ ≤ M1, then EPU
[ℓ(f(X),Yerr)] is

bounded by EP [ℓ(f(X),Y
err)] with the F-divergence Dϕk
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(PU∥P )

1
kM1

1
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Proof. Due to the covariate assumption between PU and P , we reformulate EPU
[ℓ(f(X),Yerr)] as follows:
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= ∫ [P (X)
1
k
PU(X)

P (X)
P (X)

k−1
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⎢
⎢
⎢
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where we apply the Holder’s inequality in the third inequality.

2. Implementation Details
2.1. Connections between DPA baselines and OOD detection

As we mentioned in the main part, one can also consider the problem of SDPA from the perspective of OOD detection.
To be specific, the authorizer could, for example, use any OOD detection method and simply return a wrong label for OOD
samples. Among the wide range of OOD detection areas [11], the branch with relevance to our problem is “Near OOD
Detection”, which is recently proposed to detect OOD samples that distribute close to the training one [3]. However, we
observe that it is unnecessary to such baselines in addition. The reason is simple: the framework of such Near OOD
detection methods is almost equivalent to the DPA baseline GNTL we have already compared.

To make clear comparisons, we list the recently proposed SOTA variant of near OOD detection [6] and GNTL [10] as
follows, respectively:

(a) [6] builds up a generative model (e.g., diffusion model) and simulates the OOD samples by manually tuning the
parameters of the generative model. Then the model for deployment is trained to distinguish the generated samples (OOD)
from the training one.

(b) GNTL [10] first builds up a GAN model and then generates several synthetic target domains by tuning the GAN. Finally,
the classifier for deployment is trained to discriminate the training samples from generated ones.

One can clearly observe that the above two pipelines coincide. Moreover, such first-generate-then-discriminate approaches
suffer from two problems:

(a) Can the generated target domains be representative enough? In other words, can the authorizer tune the GAN models to
generate close distributions in every direction over the divergence ball? Unfortunately, the answer is no. Geometrically,
such methods generate target data only in several directions with some distances in the distributional divergence ball. The
number of generated target domains is controlled manually by tuning the generative models. However, near distributions
in the ball are infinite such that most near distributions will be definitely neglected.

(b) Moreover, generation-based solutions are very inconvenient. One has to tune and re-train the underlying GAN/diffusion
models again once new authorized/training data comes. Such inflexible approaches further prevent their realistic
applications.

Finally, as shown in above, GNTL can be equivalently regarded as a near OOD detection approach. Therefore, we argue
that comparison with more OOD detection solutions is meaningless.



2.2. Details on Datasets

Among the six benchmarks, we resize the images from Digits and Cifar10 & STL10 into 32 × 32, while the images from
the rest benchmarks are resizes into 224 × 224. Following [8], we have removed the non-overlapping classes (“frog” and
“monkey”) and reduce the problem to a nine-class classification problem for Cifar10 & STL10. For all datasets, we take their
own training sets as the source data, and their own testing sets as the test data.

2.3. Details on the Benchmark Solution

In this section, we provide detailed settings of GNTL (the compared benchmark solution). We conduct all the experiments
using the original implementation of [10] by Pytorch. For benchmarks including Digits and Cifar10 & STL10, we directly
utilizes the GAN architecture designed in [10] without any modification. For the rest benchmarks with resized images
as 224 × 224, we first resize them into 112 × 112 (to follow the original implementation in [10] on the Visda benchmark)
and uses the same GAN model as the one designed for Visda dataset in [10]. Moreover, unlike [10], we apply GNTL to
source-only deployment authorization without embedding any pre-defined watermarks into the training data. For image data,
the pre-defined watermarks is usually achieved by attaching some shallow patches into the images [10]. In fact, the source-only
deployment authorization in [10] is governed by the ownership authorization, such that the training data is embedded with
patches by default. However, we aim to develop solutions for the pure deployment authorization problem regardless of
other kinds of authorization. For instance, consider the online services of machine learning models, users cannot access the
weights of the networks such that the ownership problem does not exist. On the contrary, the augmentation strategy with patch
embedding in [10] might ruin the performance of the model when users upload images without any watermark. Therefore, we
apply GNTL to each task with two stages as: (a) perform GAN augmentation on the training domain and obtain the augmented
data as the auxiliary domain [10]; (b) apply the standard NTL method on the training domain and the generated auxiliary
domain. For the optimization of GNTL, we strictly follow the original settings in [10] to tune the GAN augmentation and the
NTL training process. More specifically, we utilize Adam [5] as the optimizer to implement the NTL training process, with the
initial learning rate set as γ = 0.0001 and the batch size set as 32. In the training of GAN augmentation, the optimizer is also
Adam, while the initial learning rate is set as γ = 0.0002 with two decay momentums set as 0.5 and 0.999. The batch size is
64, and the dimension of the latent space fed to the generator is 256 [10].

2.4. Details on Our Methods

To support the classification tasks, we follow the previous protocols [10] and apply the VGG-11 network [9] on the Digit
benchmark, while the rest benchmarks are trained and tested with the resnet-50 model [4]. To imitate the real-world case, all
the models are pre-trained on the Imagenet dataset [10]. For both DSO and TDSO, we utilize Adam [5] as the optimizer, while
the initial learning rate is set as γ = 0.00005 with the batch size set as 32. Regarding our implementation, we upload a Pytorch
example of our code in the appendix, while the cleaned version of the total project will be released once the paper is accepted.

3. Experiments
In this section, we report detailed results of the source-only deployment authorization and target-combined authorization

on six benchmarks. Tab. 1, Tab. 4, Tab. 2 and Tab. 6 report the training accuracy and the unauthorized performance drop
of each solution for each task (e.g., Amazon→Webcam in Office-31) on the Office-31, Digit, Visda and Cifar10 & STL10
benchmarks. Tab. 3 and Tab. 5 report the corresponding results on PACS and VLCS benchmarks, respectively. Note that Tab. 3
and Tab. 5 also report the authorization performance when training each solution on the combination of the three domains,
while the other domain is set as the unauthorized domain. For instance, we select each domain in PACS as the unauthorized
domain (e.g., S), while the other three domains are set as training data (e.g., A + C + P). Such a setting corresponds to the
real-world case that the training data consists of multiple domains.



Table 1: Classification accuracy on Office-31 benchmark including Amazon (A), Webcam (W) and DSLR (D) for source-
only and target-combined deployment authorization tasks, where the bold value represents the best performance for each
authorization scene (source-only and target-combined) in each row. Notably, the source domain refers to the authorized
domain, and the other domains are considered as unauthorized domains. Meanwhile, target domains contain both the
source domain and unauthorized domains. Moreover, we denote the training performance and unauthorized performance
for TDSO in the form of Training_acc⇒ Target_acc (e.g., 0.99⇒ 0.05 represents that TDSP preserves the training accuracy
as 99% with the unauthorized accuracy as 5%).

Task Supvised Source-Only Target-Combined
Methods Resnet-50 G-NTL DSO TDSO

Source Domain Target Domains Performance

Amazon
Amazon 0.99 0.99 0.98
Webcam 0.70 0.62 0.39 0.99⇒ 0.05
DSLR 0.69 0.64 0.45 0.99⇒ 0.04

Drop on Authorized Data 0.0% 0.0% 1.0% 0.0%
Drop on Unauthorized Data 0.0% 8.5% 27.5% 64.5%

Webcam
Amazon 0.64 0.59 0.20 0.99⇒ 0.04
Webcam 0.99 0.99 0.96
DSLR 0.96 0.93 0.46 0.99⇒ 0.03

Drop on Authorized Data 0.0% 0.0% 3.0% 0.0%
Drop on Unauthorized Data 0.0% 5.5% 47.0% 76.5%

DSLR
Amazon 0.63 0.44 0.20 0.99⇒ 0.09
Webcam 0.96 0.89 0.41 0.99⇒ 0.05
DSLR 0.99 0.96 0.96

Drop on Authorized Data 0.0% 3.0% 3.0% 0.0%
Drop on Unauthorized Data 0.0% 13.0% 49.0% 72.5%

Table 2: Classification accuracy on Visda2017 for source-only and target-combined deployment authorization tasks, where
the bold value represents the best performance for each authorization scene (source-only and target-combined) in each row.
Notably, the source domain refers to the authorized domain, and the other domains are considered as unauthorized
domains. Meanwhile, target domains contain both the source domain and unauthorized domains.

Task Supvised Source-Only Target-Combined
Methods Resnet-50 G-NTL DSO TDSO

Source Domain Target Domains Performance

Real Real 0.94 0.89 0.94
Synthetic 0.80 0.74 0.52 0.94⇒ 0.08

Drop on Authorized Data 0.0% 5.0% 0.0% 0.0%
Drop on Unauthorized Data 0.0% 6.0% 18.0% 72.0%

Synthetic Real 0.35 0.34 0.19 0.95⇒ 0.07
Synthetic 0.95 0.95 0.94

Drop on Authorized Data 0.0% 0.0% 1.0% 0.0%
Drop on Unauthorized Data 0.0% 1.0% 16.0% 28.0%



Table 3: Classification accuracy on PACS benchmark including Art_paintint (A), Cartoon (C), Photo (P) and Sketch (S)
for source-only and target-combined deployment authorization tasks, where the bold value represents the best performance
for each authorization scene (source-only and target-combined) in each row. Notably, the source domain refers to the
authorized domain, and the other domains are considered as unauthorized domains. Meanwhile, target domains
contain both the source domain and unauthorized domains.

Task Supvised Source-Only Target-Combined
Methods Resnet-50 G-NTL DSO TDSO

Source Domain Target Domains Performance

Art

Art 0.99 0.99 0.98
Cartoon 0.58 0.55 0.53 0.99⇒0.15
Photo 0.78 0.75 0.51 1.00⇒0.11
Sketch 0.55 0.54 0.45 1.00⇒0.12

Drop on Authorized Data 0.0% 0.0% 1.0% 0%
Drop on Unauthorized Data 0.0% 2.0% 13.0% 51.0%

Cartoon

Art 0.60 0.59 0.49 0.99⇒0.13
Cartoon 1.00 0.97 0.99
Photo 0.63 0.63 0.55 0.99⇒0.15
Sketch 0.61 0.61 0.54 0.99⇒0.14

Drop on Authorized Data 0.0% 3.0% 1.0% 1.0%
Drop on Unauthorized Data 0.0% 0.3% 8.0% 47.3%

Photo

Art 0.57 0.59 0.49 0.99⇒0.15
Cartoon 0.50 0.55 0.29 0.99⇒0.09
Photo 1.00 0.99 0.99
Sketch 0.52 0.22 0.21 0.99⇒0.15

Drop on Authorized Data 0.0% 1.0% 1.0% 1.0%
Drop on Unauthorized Data 0.0% 9.7% 20.0% 40.0%

Sketch

Art 0.24 0.21 0.13 0.99⇒0.09
Cartoon 0.38 0.37 0.22 0.99⇒0.12
Photo 0.22 0.20 0.14 0.99⇒0.18
Sketch 0.99 0.99 0.98

Drop on Authorized Data 0.0% 0.0% 1.0% 0.0%
Drop on Unauthorized Data 0.0% 2.0% 12.0% 15.0%

A+C+P→ S 0.99⇒0.80 0.99⇒0.64 0.95⇒0.57 0.99⇒0.19
C+P+S → A 0.99⇒0.81 0.99⇒0.66 0.95⇒0.47 0.98⇒0.23
P+S+A → C 0.99⇒0.78 0.99⇒0.73 0.97⇒0.55 0.99⇒0.37
S+A+C→ P 0.99⇒0.94 0.99⇒0.83 0.95⇒0.71 0.99⇒0.22

Drop on Authorized Data 0.0% 0.0% 3.5% 0.0%
Drop on Unauthorized Data 0.0% 11.8% 25.8% 58.0%



Table 4: Classification accuracy on Digit benchmark including MNIST (MN), USPS (US), SVHN (SV), SYN_D (SD) and
MNIST_M(MM) for source-only and target-combined deployment authorization tasks, where the bold value represents the
best performance for each authorization scene (source-only and target-combined) in each row. Notably, the source domain
refers to the authorized domain, and the other domains are considered as unauthorized domains. Meanwhile, target
domains contain both the source domain and unauthorized domains.

Task Supvised Source-Only Target-Combined
Methods VGG-11 G-NTL DSO TDSO

Source Domain Target Domains Performance

MN

MN 0.99 0.99 0.98
US 0.86 0.71 0.68 0.99⇒ 0.07
SV 0.35 0.21 0.21 0.99⇒ 0.08
SD 0.36 0.22 0.11 0.98⇒ 0.09
MM 0.58 0.35 0.29 0.99⇒ 0.09

Drop on Authorized Data 0.0% 0.0% 1.0% 0.0%
Drop on Unauthorized Data 0.0% 15.5% 19.5% 45.5%

US

MN 0.89 0.72 0.53 0.98⇒ 0.09
US 0.98 0.95 0.96
SV 0.26 0.14 0.12 0.98⇒ 0.07
SD 0.39 0.13 0.20 0.96⇒ 0.09
MM 0.43 0.10 0.12 0.97⇒ 0.10

Drop on Authorized Data 0.0% 3.0% 2.0% 0.1%
Drop on Unauthorized Data 0.0% 22.0% 25.0% 40.5%

SV

MN 0.78 0.66 0.56 0.94⇒ 0.10
US 0.73 0.68 0.50 0.94⇒ 0.07
SV 0.94 0.89 0.92
SD 0.58 0.52 0.53 0.94⇒ 0.10
MM 0.56 0.52 0.35 0.94⇒ 0.09

Drop on Authorized Data 0% 5% 2% 0%
Drop on Unauthorized Data 0.0% 6.8% 17.8% 57.3%

SD

MN 0.88 0.84 0.68 0.97⇒ 0.07
US 0.83 0.81 0.69 0.97⇒ 0.08
SV 0.85 0.86 0.61 0.97⇒ 0.10
SD 0.98 0.98 0.97
MM 0.66 0.56 0.40 0.97⇒ 0.01

Drop on Authorized Data 0.0% 0.0% 1.0% 1.0%
Drop on Unauthorized Data 0.0% 3.8% 21.0% 74.0%

MM

MN 0.96 0.53 0.46 0.98⇒ 0.09
US 0.83 0.13 0.19 0.98⇒ 0.09
SV 0.48 0.27 0.29 0.98⇒ 0.09
SD 0.54 0.45 0.47 0.98⇒ 0.10
MM 0.98 0.97 0.94

Drop on Authorized Data 0.0% 1.0% 3.0% 0.0%
Drop on Unauthorized Data 0.0% 35.7% 35.0% 61.0%



Table 5: Classification accuracy on VLCS benchmark including Caltech101 (C), LabelMe (L), VOC2007 (V) and SUN09 (S)
for source-only and target-combined deployment authorization tasks, where the bold value represents the best performance
for each authorization scene (source-only and target-combined) in each row. Notably, the source domain refers to the
authorized domain, and the other domains are considered as unauthorized domains. Meanwhile, target domains
contain both the source domain and unauthorized domains.

Task Supvised Source-Only Target-Combined
Methods Resnet-50 G-NTL DSO TDSO

Source Domain Target Domains Performance

Caltech101

Caltech101 1.00 0.97 1.00
LabelMe 0.28 0.26 0.25 0.97⇒0.22
VOC2007 0.31 0.30 0.27 0.97⇒0.20

SUN09 0.33 0.31 0.20 0.97⇒0.18
Drop on Authorized Data 0.0% 1.7% 0.0% 3.0%

Drop on Unauthorized Data 0.0% 0.7% 6.7% 10.7%

LabelMe

Caltech101 0.83 0.77 0.33 0.99⇒0.23
LabelMe 1.00 1.00 1.00
VOC2007 0.42 0.38 0.39 0.99⇒0.21

SUN09 0.38 0.41 0.36 0.99⇒0.22
Drop on Authorized Data 0.0% 0.0% 0.0% 1.0%

Drop on Unauthorized Data 0.0% 2.3% 18.3% 32.3%

VOC2007

Caltech101 0.91 0.89 0.30 0.99⇒0.20
LabelMe 0.51 0.53 0.47 0.99⇒0.21
VOC2007 0.99 0.99 0.96

SUN09 0.54 0.54 0.40 0.99⇒0.15
Drop on Authorized Data 0.0% 0.0% 3.0% 0.0%

Drop on Unauthorized Data 0.0% 0.0% 26.3% 46.7%

SUN09

Caltech101 0.59 0.59 0.33 0.98⇒0.21
LabelMe 0.52 0.51 0.49 0.98⇒0.20
VOC2007 0.51 0.51 0.39 0.98⇒0.22

SUN09 0.99 0.99 0.98
Drop on Authorized Data 0.0% 0.0% 1.0% 2.0%

Drop on Unauthorized Data 0.0% 0.0% 13.6% 33.3%
C+L+V → S 0.99⇒0.70 0.99⇒0.62 0.96⇒0.46 0.97⇒0.22
L+V+S → C 0.99⇒0.92 0.98⇒0.92 0.94⇒0.43 0.99⇒0.17
V+S+C→ L 0.98⇒0.62 0.99⇒0.59 0.98⇒0.51 0.98⇒0.23
S+C+L → V 0.99⇒0.71 0.99⇒0.61 0.99⇒0.42 0.98⇒0.21

Drop on Authorized Data 0.0% 0.0% 2.0% 0.7%
Drop on Unauthorized Data 0.0% 0.0% 23.0% 47.8%



Table 6: Classification accuracy on Cifar10 & STL10 for source-only and target-combined deployment authorization tasks,
where the bold value represents the best performance for each authorization scene (source-only and target-combined) in each
row. Notably, the source domain refers to the authorized domain, and the other domains are considered as unauthorized
domains. Meanwhile, target domains contain both the source domain and unauthorized domains.

Task Supvised Source-Only Target-Combined
Methods Resnet-50 G-NTL DSO TDSO

Source Domain Target Domains Performance

Cifar10 Cifar10 0.93 0.86 0.89
STL10 0.76 0.70 0.59 0.93⇒0.39

Drop on Authorized Data 0.0% 0.0% 3% 0.0%
Drop on Unauthorized Data 0.0% 6.0% 17.0% 37.0%

STL10 Cifar10 0.68 0.57 0.43 0.92⇒0.17
STL10 0.92 0.89 0.90

Drop on Authorized Data 0.0% 0.0% 1.0% 2.0%
Drop on Unauthorized Data 0.0% 11% 25.0% 51.0%
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