
Appendix for
“EfficientTrain: Exploring Generalized Curriculum Learning

for Training Visual Backbones”

A. Implementation Details

A.1. Training Models on ImageNet-1K

Dataset. We use the data provided by ILSVRC20121 [17]. The dataset includes 1.2 million images for training and 50,000
images for validation, both of which are categorized in 1,000 classes.

Training. Our approach is developed on top of a state-of-the-art training pipeline of deep networks, which incorporates a
holistic combination of various model regularization & data augmentation techniques, and is widely applied to train recently
proposed models [19, 20, 4, 21, 18]. Our training settings generally follow from [18], while we modify the configurations
of weight decay, stochastic depth and exponential moving average (EMA) according to the recommendation in the original
papers of different models (i.e., ConvNeXt [18], DeiT [19], PVT [20], Swin Transformer [4] and CSWin Transformer [21])2.
The detailed hyper-parameters are summarized in Table 14.

The baselines presented in Table 6 directly use the training configurations in Table 14. Based on Table 14, our proposed
EfficientTrain curriculum performs low-frequency cropping and modifies the value of m in RandAug during training, as
introduced in Table 5. The results in Tables 8 and 9 adopt a varying number of training epochs on top of Table 6.

In addition, the low-frequency cropping operation in EfficientTrain leads to a varying input size during training. Notably,
visual backbones can naturally process different sizes of inputs with no or minimal modifications. Specifically, once the
input size varies, ResNets and ConvNeXts do not need any change, while vision Transformers (i.e., DeiT, PVT, Swin and
CSWin) only need to resize their position bias correspondingly, as suggested in their papers. Our method starts the training
with small-size inputs and the reduced computational cost. The input size is switched midway in the training process, where
we resize the position bias for ViTs (do nothing for ConvNets). Finally, the learning ends up with full-size inputs, as used at
test time. As a consequence, the overall computational/time cost to obtain the final trained models is effectively saved.

Inference. Following [19, 20, 4, 21, 18], we use a crop ratio of 0.875 and 1.0 for the inference input size of 2242 and
3842, respectively.

Training Config Values / Setups

Input size 2242

Weight init. Truncated normal (0.2)
Optimizer AdamW
Optimizer hyper-parameters β1, β2=0.9, 0.999
Initial learning rate 4e-3
Learning rate schedule Cosine annealing
Weight decay 0.05
Batch size 4,096
Training epochs 300
Warmup epochs 20
Warmup schedule linear
RandAug [86] (9, 0.5)
Mixup [98] 0.8
Cutmix [99] 1.0
Random erasing [100] 0.25
Label smoothing [101] 0.1
Stochastic depth [102] Following the values in original papers [18, 19, 20, 4, 21].
Layer scale [103] 1e-6 (ConvNeXt [18]) / None (others)

Gradient clip 5.0 (DeiT [19], PVT [20] and Swin [4]) / None (others)

Exp. mov. avg. (EMA) [104] 0.9999 (ConvNeXt [18] and CSWin [21]) / None (others)

Auto. mix. prec. (AMP) [105] Inactivated (ConvNeXt [18]) / Activated (others)

Table 14: Basic training hyper-parameters for the models in Table 6.

1https://image-net.org/index.php
2The training of ResNet [1] follows the recipe provided in [18].

A.2. ImageNet-22K Pre-training

Dataset and pre-processing. In our experiments, the officially released processed version of ImageNet-22K3 [17, 106] is
used. The original ImageNet-22K dataset is pre-processed by resizing the images (to reduce the dataset’s memory footprint
from 1.3TB to ∼250GB) and removing a small number of samples. The processed dataset consists of ∼13M images in ∼19K
classes. Note that this pre-processing procedure is officially recommended and accomplished by the official website.

Pre-training. We pre-train CSWin-Base/Large and ConvNeXt-Base/Large on ImageNet-22K. The pre-training process
basically follows the training configurations of ImageNet-1K (i.e., Table 14), except for the differences presented in the
following. The number of training epochs is set to 120 with a 5-epoch linear warm-up. For all the four models, the maximum
value of the increasing stochastic depth regularization [102] is set to 0.1 [18, 21]. Following [21], the initial learning rate
for CSWin-Base/Large is set to 2e-3, while the weight-decay coefficient for CSWin-Base/Large is set to 0.05/0.1. Following
[18], we do not leverage the exponential moving average (EMA) mechanism. To ensure a fair comparison, we report the
results of our implementation for both baselines and EfficientTrain, where they adopt exactly the same training settings (apart
from the configurations modified by EfficientTrain itself).

Fine-tuning. We evaluate the ImageNet-22K pre-trained models by fine-tuning them and reporting the corresponding
accuracy on ImageNet-1K. The fine-tuning process of ConvNeXt-Base/Large follows their original paper [18]. The fine-
tuning of CSWin-Base/Large adopts the same setups as ConvNeXt-Base/Large. We empirically observe that this setting
achieves a better performance than the original fine-tuning pipeline of CSWin-Base/Large in [21].

A.3. Object Detection and Segmentation on COCO

Our implementation of RetinaNet [96] follows from [107]. Our implementation of Cascade Mask-RCNN [97] is the same
as [18].

A.4. Experiments in Section 4

In particular, the experimental results provided in Section 4 are based on the training settings listed in Table 14 as well,
expect for the specified modifications (e.g., with the low-passed filtered inputs). The computing of CKA feature similarity
follows [108].

3https://image-net.org/data/imagenet21k_resized.tar.gz

B. Additional Results
B.1. Wall-time Training Cost

The detailed wall-time training cost for the models presented in Table 6 of the paper is reported in Table 15. The numbers
of GPU-hours are benchmarked on NVIDIA 3090 GPUs. The batch size for each GPU and the total number of GPUs are
configured conditioned on different models, under the principle of saturating all the computational cores of GPUs.

Model
Input Size
(inference) #Param. #FLOPs

Top-1 Accuracy Wall-time Training Cost
Speedup(300 epochs) (in GPU-hours)

Baseline EfficientTrain Baseline EfficientTrain

ConvNets

ResNet-50 [1] 2242 26M 4.1G 78.8% 79.4% 205.2 142.2 1.44×
ConvNeXt-Tiny [18] 2242 29M 4.5G 82.1% 82.2% 379.5 254.1 1.49×
ConvNeXt-Small [18] 2242 50M 8.7G 83.1% 83.2% 673.5 449.9 1.50×
ConvNeXt-Base [18] 2242 89M 15.4G 83.8% 83.7% 997.0 671.6 1.48×

Isotropic
ViTs

DeiT-Tiny [19] 2242 5M 1.3G 72.5% 73.3% 60.5 38.9 1.55×
DeiT-Small [19] 2242 22M 4.6G 80.3% 80.4% 137.7 90.9 1.51×

Multi-stage
ViTs

PVT-Tiny [20] 2242 13M 1.9G 75.5% 75.5% 99.0 66.8 1.48×
PVT-Small [20] 2242 25M 3.8G 79.9% 80.4% 201.1 129.2 1.56×
PVT-Medium [20] 2242 44M 6.7G 81.8% 81.8% 310.9 208.3 1.49×
PVT-Large [20] 2242 61M 9.8G 82.3% 82.3% 515.9 337.3 1.53×
Swin-Tiny [4] 2242 28M 4.5G 81.3% 81.4% 232.3 155.5 1.49×
Swin-Small [4] 2242 50M 8.7G 83.1% 83.2% 360.3 239.4 1.50×
Swin-Base [4] 2242 88M 15.4G 83.4% 83.6% 494.5 329.9 1.50×
CSWin-Tiny [21] 2242 23M 4.3G 82.7% 82.8% 290.1 187.5 1.55×
CSWin-Small [21] 2242 35M 6.9G 83.4% 83.6% 438.5 291.0 1.51×
CSWin-Base [21] 2242 78M 15.0G 84.3% 84.3% 823.7 528.2 1.56×

Table 15: Accuracy v.s. wall-time training cost for the deep networks trained on ImageNet-1K (i.e., corresponding to
the models presented in Table 6 of the paper).

B.2. On the Continuous Selection of B

Notably, the basic formulation behind EfficientTrain considers a continuous function of B, i.e., f : epoch→B. Theoret-
ically, we can obtain an optimal curriculum if we directly solve for a strictly continuous f . However, directly solving for a
continuous function is computationally intractable. To achieve a reasonable trade-off between the computational cost and the
effectiveness of the solution, we adopt an approximation approach, i.e., approximating the continuous function of B with a
staircase function. Specifically, we divide the training process into N stages and solve for a value of B for each stage, where
we set N=5 and obtained the EfficientTrain curriculum.

Importantly, such approximation works reasonably well. As shown in our paper, its solution (EfficientTrain) considerably
improves the training efficiency of deep networks, and exhibits superior generalizability across different backbone architec-
tures and various training settings. Besides, as shown in Table 16, further approaching solving for a continuous function of
B (e.g., N=10) only yields limited gains.

Baseline N=3 N=4 N=5 (EfficientTrain) N=10

Top-1 Accuracy 81.3% 81.3% 81.4% 81.4% 81.3%

Training Speedup 1.00× 1.34× 1.46× 1.55× 1.63×
Table 16: Effects when we approach solving for a continuous function: f : epoch→B (by increasing N in Alg. 1). Swin-T on ImageNet-1K.

C. Proof of Proposition 1
In this section, we theoretically demonstrate the difference between two transformations, namely low-frequency cropping

and image down-sampling. In specific, we will show that from the perspective of signal processing, the former perfectly
preserves the lower-frequency signals within a square region in the frequency domain and discards the rest, while the image
obtained from pixel-space down-sampling contains the signals mixed from both lower- and higher- frequencies.

C.1. Preliminaries

An image can be seen as a high-dimensional data point X ∈ RC0×H0×W0 , where C0, H0,W0 represent the number of
channels, height and width. Since each channel’s signals are regarded as independent, for the sake of simplicity, we can focus
on a single-channel image with even edge length X ∈ R2H×2W . Denote the 2D discrete Fourier transform as F(·). Without
loss of generality, we assume that the coordinate ranges are {−H,−H + 1, . . . ,H − 1} and {−W,−W + 1, . . . ,W − 1}.
The value of the pixel at the position [u, v] in the frequency map F = F(X) is computed by

F [u, v] =

H−1∑
x=−H

W−1∑
y=−W

X[x, y] · exp
(
−j2π

(ux

2H
+

vy

2W

))
.

Similarly, the inverse 2D discrete Fourier transform X = F−1(F) is defined by

X[x, y] =
1

4HW

H−1∑
u=−H

W−1∑
v=−W

F [u, v] · exp
(
j2π

(ux

2H
+

vy

2W

))
.

Denote the low-frequency cropping operation parametrized by the output size (2H ′, 2W ′) as CH′,W ′(·), which gives outputs
by simple cropping:

CH′,W ′(F)[u, v] =
H ′W ′

HW
· F [u, v].

Note that here u ∈ {−H,−H+1, . . . ,H−1}, v ∈ {−W,−W +1, . . . ,W −1}, and this operation simply copies the central
area of F with a scaling ratio. The scaling ratio H′W ′

HW is a natural term from the change of total energy in the pixels, since
the number of pixels shrinks by the ratio of H′W ′

HW .
Also, denote the down-sampling operation parametrized by the ratio r ∈ (0, 1] as Dr(·). For simplicity, we first consider

the case where r = 1
k for an integer k ∈ N+, and then extend our conclusions to the general cases where r ∈ (0, 1]. In real

applications, there are many different down-sampling strategies using different interpolation methods, i.e., nearest, bilinear,
bicubic, etc. When k is an integer, these operations can be modeled as using a constant convolution kernel to aggregate the
neighborhood pixels. Denote this kernel’s parameter as ws,t where s, t ∈ {0, 1, . . . , k − 1} and

∑k−1
s=0

∑k−1
t=0 ws,t = 1

k2 .
Then the down-sampling operation can be represented as

D1/k(X)[x′, y′] =

k−1∑
s=0

k−1∑
t=0

ws,t ·X[kx′ + s, ky′ + t].

C.2. Propositions

Now we are ready to demonstrate the difference between the two operations and prove our claims. We start by considering
shrinking the image size by k and k is an integer. Here the low-frequency region of an image X ∈ RH×W refers to the signals
within range [−H/k,H/k − 1]× [−W/k,W/k − 1] in F(X), while the rest is named as the high-frequency region.

Proposition 1.1. Suppose that the original image is X , and that the image generated from the low-frequency cropping
operation is Xc = F−1 ◦ CH/k,W/k ◦ F(X), k ∈ N+. We have that all the signals in the spectral map of Xc is only from
the low frequency region of X , while we can always recover CH/k,W/k ◦ F(X) from Xc.

Proof. The proof of this proposition is simple and straightforward. Take Fourier transform on both sides of the above
transformation equation, we get

F(Xc) = CH/k,W/k ◦ F(X).

Denote the spectral of Xc as Fc = F(Xc) and similarly F = F(X). According to our definition of the cropping operation,
we know that

Fc[u, v] =
H/k ·W/k

HW
· F [u, v] =

1

k2
· F [u, v].

Hence, the spectral information of Xc simply copies X’s low frequency parts and conducts a uniform scaling by dividing
k2.

Proposition 1.2. Suppose that the original image is X , and that the image generated from the down-sampling operation
is Xd = D1/k(X), k ∈ N+. We have that the signals in the spectral map of Xd have a non-zero dependency on the high
frequency region of X .

Proof. Taking Fourier transform on both sides, we have

F(Xd) = F(D1/k(X)).

For any u ∈ [−H/k,H/k − 1], v ∈ [−W/k,W/k − 1], according to the definition we have

F(Xd)[u, v] =

H/k−1∑
x=−H/k

W/k−1∑
y=−W/k

D1/k(X)[x, y] · exp
(
−j2π

(
kux

2H
+

kvy

2W

))

=

H/k−1∑
x=−H/k

W/k−1∑
y=−W/k

k−1∑
s=0

k−1∑
t=0

ws,t ·X[kx+ s, ky + t] · exp
(
−j2π

(
kux

2H
+

kvy

2W

))
, (*1)

while at the same time we have the inverse DFT for X:

X[x, y] =
1

2H · 2W
H−1∑

u′=−H

W−1∑
v′=−W

F [u′, v′] · exp
(
j2π

(
u′x

2H
+

v′y

2W

))
. (*2)

Plugging (*2) into (*1), it is easy to see that essentially each Fd(u, v) = F(Xd)[u, v] is a linear combination of the original
signals F [u′, v′]. Namely, it can be represented as

Fd(u, v) =

H−1∑
u′=−H

W−1∑
v′=−W

α(u, v, u′, v′) · F (u′, v′).

Therefore, we can compute the dependency weight for any given tuple (u, v, u′, v′) as

α(u, v, u′, v′) =
1

4HW

H−1∑
x=−H

W−1∑
y=−W

wxr,yr · exp
(
−j2π

(uxp

2H
+

vyp
2W

))
· exp

(
j2π

(
u′x

2H
+

v′y

2W

))

=
1

4HW

H−1∑
x=−H

W−1∑
y=−W

wxr,yr
· exp

(
j2π

(
u′x− uxp

2H
+

v′y − vyp
2W

))
,

where xr = x mod k, xp = x− xr, same for yr, yp. Further deduction shows

α(u, v, u′, v′) =
1

4HW

H−1∑
x=−H

W−1∑
y=−W

wxr,yr · exp
(
j2π

(
(u′ − u)xp + u′xr

2H
+

(v′ − v)yp + v′yr
2W

))

=
1

4HW

H/k−1∑
x′=−H/k

W/k−1∑
y′=−W/k

k−1∑
s=0

k−1∑
t=0

ws,t · exp
(
j2πk

(
(u′ − u)x′

2H
+

(v′ − v)y′

2W

))
· exp

(
j2π

(
u′s

2H
+

v′t

2W

))

=
1

4HW

H/k−1∑
x′=−H/k

W/k−1∑
y′=−W/k

exp

(
j2πk

(
(u′ − u)x′

2H
+

(v′ − v)y′

2W

)) k−1∑
s=0

k−1∑
t=0

ws,t · exp
(
j2π

(
u′s

2H
+

v′t

2W

))
.

Denote β(u′, v′) =
∑k−1

s=0

∑k−1
t=0 ws,t · exp

(
j2π

(
u′s
2H + v′t

2W

))
, which is a constant conditioned on (u′, v′). Then we know

α(u, v, u′, v′) =
β(u′, v′)

4HW

H/k−1∑
x′=−H/k

W/k−1∑
y=−W/k

exp

(
j2πk

(
(u′ − u)x′

2H
+

(v′ − v)y′

2W

))

=
β(u′, v′)

4HW

H/k−1∑
x′=−H/k

exp

(
j2πk

(
(u′ − u)x′

2H

)) W/k−1∑
y′=−W/k

exp

(
j2πk

(
(v′ − v)y′

2W

))

=

{
β(u′,v′)

k2 , u′ − u = a · 2H
k , v′ − v = b · 2W

k , a, b ∈ Z
0, otherwise

. (*3)

In general, β(u′, v′) ̸= 0 when u′ ̸= c · 2H
k , v′ ̸= d · 2W

k , c, d ∈ Z, cd ̸= 0. Hence, when 2H
k |(u′ − u), 2W

k |(v′ − v), we
have α(u, v, u′, v′) ̸= 0 given uv ̸= 0, while α(u, 0, u′, 0) ̸= 0 given u ̸= 0, α(0, v, 0, v′) ̸= 0 given v ̸= 0. Therefore,
the image generated through down-sampling contains mixed information from both low frequency and high frequency, since
most signals have a non-zero dependency on the global signals of the original image.

Proposition 1.3. The conclusions of Proposition 1.1 and Proposition 1.2 still hold when k ∈ Q+ is not an integer.
Proof. It is obvious that Proposition 1.1 can be naturally extended to k ∈ Q+. Therefore, here we focus on Proposition

1.2. First, consider up-sampling an image X by m ∈ N+ times with the nearest interpolation, namely

Xup[mx+ s,my + t] = X[x, y], s, t ∈ {0, 1, . . . ,m− 1}.
Taking Fourier transform, we have

F(Xup)[u, v] =

mH−1∑
x=−mH

mW−1∑
y=−mW

Xup[x, y] · exp
(
−j2π

(
ux

2mH
+

kvy

2mW

))

=

H−1∑
x=−H

W−1∑
y=−W

m−1∑
s=0

m−1∑
t=0

X[x, y] · exp
(
−j2π

(
u(mx+ s)

2mH
+

v(my + t)

2mW

))
. (*4)

Similar to the proof of Proposition 1.2, by plugging (*2) into (*4), it is easy to see that Fup(u, v) = F(Xup)[u, v] is a linear
combination of the signals from the original image. Namely, we have

Fup(u, v) =

H−1∑
u′=−H

W−1∑
v′=−W

αup(u, v, u
′, v′) · F (u′, v′).

Given any (u, v, u′, v′), αup(u, v, u
′, v′) can be computed as

αup(u, v, u
′, v′) =

1

4HW

H−1∑
x=−H

W−1∑
y=−W

m−1∑
s=0

m−1∑
t=0

exp

(
−j2π

(
u(mx+ s)

2mH
+

v(my + t)

2mW

))
· exp

(
j2π

(
u′x

2H
+

v′y

2W

))

=
1

4HW

H−1∑
x=−H

W−1∑
y=−W

exp

(
j2π

(
(u′ − u)x

2H
+

(v′ − v)y

2W

))m−1∑
s=0

m−1∑
t=0

exp

(
−j2π

(
us

2mH
+

vt

2mW

))
.

Denote βup(u, v) =
∑m−1

s=0

∑m−1
t=0 exp

(
−j2π

(
us

2mH + vt
2mW

))
, which is a constant conditioned on (u, v). Then we know

αup(u, v, u
′, v′) =

βup(u, v)

4HW

H−1∑
x=−H

W−1∑
y=−W

exp

(
j2π

(
(u′ − u)x

2H
+

(v′ − v)y

2W

))

=
βup(u, v)

4HW

H−1∑
x=−H

exp

(
j2π

(
(u′ − u)x

2H

)) W−1∑
y=−W

exp

(
j2π

(
(v′ − v)y

2W

))

=

{
βup(u, v), u′ − u = a · 2H, v′ − v = b · 2W, a, b ∈ Z
0, otherwise

. (*5)

Since −H ≤ u ≤ H − 1,−W ≤ v ≤ W − 1, we have βup(u, v) ̸= 0. Thus, we have αup(u, v, u
′, v′) ̸= 0 when

2H|(u′ − u), 2W |(v′ − v).
Now we return to Proposition 1.3. Suppose that the original image is X , and that the image obtained through down-

sampling is Xd = D1/k(X), where k ∈ Q+ may not be an integer. We can always find two integers m0 and k0 such that
k0

m0
= k. Consider first up-sampling X by m0 times with the nearest interpolation and then performing down-sampling by

k0 times. By combining (*3) and (*5), it is easy to verify that Proposition 1.3 is true.

D. More Discussions
Potential impacts. The de-facto guarantee for the state-of-the-art performance of modern deep networks (e.g., vision

Transformers) incorporates an increasing model size, the large-scale training data, and a sufficiently long training procedure
with delicate regularization techniques. However, the establishment of this regime comes at an intensive and unaffordable
computational cost for training. Towards this direction, EfficientTrain proposes a simple, easy-to-use, but effective learning
approach to reduce the training cost of visual backbones. Our work may benefit real-world applications in terms of accel-
erating the designing and validating of deep learning architectures or algorithms. Under environmental considerations, it
will also help to reduce the carbon emission caused by training large deep learning models. For the research community,
EfficientTrain may potentially motivate the researchers to focus on the generalized formulation of curriculum learning.

Limitations and future work. Currently, the EfficientTrain algorithm mainly focuses on training models with images. In
the future, we will focus on extending our method to leveraging videos or texts. In addition, it would be interesting to explore
whether we can extract the ‘easier-to-learn’ information from the lens of the spatial or temporal redundancy of vision data
[109, 110, 111, 112, 113, 114, 115]. We will also focus on exploring facilitating the efficient training of deep networks by
leveraging dynamic network architectures [116, 117, 118].

