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A. Dataset Collection Details

In Section 3 of the main paper, we describe using Custom
Diffusion to generate “add-one-in”” models. Here, we pro-
vide additional details. We follow the hyperparameters and
best practices from Kumari ef al. [4]. Since only prompts
related to the input image are used to build the dataset, it is
unnecessary to add regularization to prevent language drifts
for unrelated concepts. Thus, for faster convergence, we do
not train models on the regularization datasets. We train
each model and early stop at 125 iterations, following best
practices from the paper.

Broad categories in object-centric models. In Sec-
tion 3.2 of the main paper, we describe our object-
centric models, which contain instances drawn from Im-
ageNet classes. We group the 693 ImageNet classes
into 55 broad categories, where the categories are taken
from a public repo'. Example categories are aircraft,
arachnid, armadillo, ball, bear, etc. These broad
category names are more effective for training and prompt-
ing the model for existing model personalization works [4,
], than the fine-grained category names, which are too
long, descriptive, and do not sound like natural language,
e.g., “yellow lady’s slipper”. We include the com-
plete list in the attached file imagenet _categories.txt
and the category assignment for each ImageNet class is in
imagenet_class_to_categories. json.
More details of prompting for object-centric models. We
create 25 ChatGPT prompts for each category with the fol-
lowing query:

Provide 25 diverse image captions depicting im-
ages containing <category>, where the word
“<category>" is in each caption as a subject.
Each caption should be applicable to depict im-
ages containing any kinds of <category> in gen-
eral, without explicitly mentioning any specific
<category>. Each caption should be suitable to
generate realistic images using a large-scale text-
to-image generative model.

https://github.com/noameshed/
novelty-detection/blob/master/imagenet_
categories.csv
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GPT prompts/test/style-centric/gpt.txt
Object (Artchive) prompts/test/style-centric/object-artchive.txt
Object (BAM-FG) prompts/test/style-centric/object-bamfg.txt
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Table 1: Prompts used in different splits. In this document, we
provide additional information regarding our prompt collection.
Please see the included files for our prompts used for training and
testing. Each model type and prompting type is separated into
different files. <category> stands for each broad category used
in object-centric models.

At times, the generated captions are repetitive or too specific,
so we iterate through the querying process and manually
select 25 suitable captions for each category. It is challeng-
ing to obtain over 25 suitable captions, as repetitions are
likely. For each occurrence of the word <category>, we
replace it with V* <category>, as the Custom Diffusion
framework uses the V* token to refer to the tuned concept
in the exemplar image(s). We also procedurally generate 50
prompts to introduce stylistic variations, where each prompt
is of the form “A <medium> of V* <category>.” The
50 mediums are selected from a public repo’.

More details of prompting for artistic-style models. We
create 50 prompts to generate painting-like captions through
ChatGPT with the following query:

Provide 50 image captions that are suitable for
paintings.

We iterate through the querying process and manually select
50 suitable captions. We add “in the style of V* art”
at the end of each caption.

We also procedurally generate 40 prompts to in-
troduce object variations, where each prompt is of
the form “A picture of <object> in the style of
V* art” for BAM-FG models and “A painting of

2https://github.com/pharmapsychotic/
clip-interrogator/blob/main/clip_interrogator/
data/mediums.txt
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<object> in the style of V* art.” We select 40 ob-
jects from a collection of 50 obtained by ChatGPT using the
prompt:

Provide 50 objects that can appear on a design,
poster, or painting.

We provide attached files with all of our prompts, listed in
Table 1.

Prompt files. We use different prompts for training and test-
ing. We include full lists of prompts for our dataset creation
in the files specified in Table 1. We use different prompts
during training and testing, to facilitate an out-of-distribution
test set.

Dataset visualization. We visualize a subset of our dataset
in the attached webpages, where we show the training ex-
emplars, along with the samples synthesized using differ-
ent prompting schemes. We show object-centric models
indataset vis/object_centric.html and artistic-style
models in dataset_vis/style_centric.html.

B. Additional Analysis
B.1. Visualizing the calibrated influence scores.

In the main paper, we formulate the soft influence score
calibration in Section 4.2 and discuss the results in Section 5.
Here, we provide additional analysis by visualizing the differ-
ence between calibrated influence score and a plain softmax
applied on the feature similarities. Figure 1 shows the distri-
bution of influence scores before and after calibration. Since
the range of the cosine similarity is small ([—1, 1]), applying
just softmax on the similarities leads to evenly spread influ-
ence scores across the training data. This indicates the need
to find an appropriate temperature to give a more distinctive
influence score. In Figure 1, after calibration, we can assign
higher influence scores to the top-attributed training images.

B.2. Ablation Studies

In Section 5 of the main text, we report the effect of
different mapping functions, regularization, and augmenta-
tion strategies for finetuning in Figure 7. In this section, we
discuss the ablation in more detail.

Regularization. First, learning the linear mappings without
regularization leads to significant overfitting. Since our regu-
larization encourages linear mapping to be a rigid transform,
the learned mapping with regularization preserves pretrained
features’ properties, resulting in better generalization.

Mapping functions. Next, we compare two other choices
of mapping functions with increasing capacity. Channel-
wise multiplication (Channel) can only scale the existing
features and is not enough to improve the performance. On
the other hand, we try increasing the capacity using 2-layer
MLP (MLP), resembling the projection head in MoCo v3 [2].
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Figure 1: Distribution of influence scores. We collect the influence
scores assigned to the training points from each query and visualize
the distribution of scores. We show the results of our tuned DINO
features (Left) and our tuned CLIP features (Right). Each row
represents a test case. We compare the distribution before and
after calibration, colored in black and green, respectively. The
uncalibrated softmax gives small values close to 0, and calibration
produces more meaningful influence scores.

However, this leads to overfitting, resulting in a much worse
generalization on the test set. This validates that our final set-
ting of a well-regularized linear mapping function (Linear)
is a sweet spot, with enough complexity to improve perfor-
mance, without suffering from overfitting.

Data augmentations. Finally, we compare performance
when trained with mild and strong augmentations. Our mild
augmentation consists of random horizontal flips, resizing,
and crops. Our strong augmentation follows DINO [ 1] (ran-
dom flips, resizing, crops, color jittering, Gaussian blur and
solarization, with multi-crops removed). We find that two
types of augmentation schemes yield similar performance,
where applying mild augmentation is slightly favorable. This
indicates that applying strong augmentation is not necessary,
as we are taking advantage of a pretrained feature extractor
and learning light mapping function on top. Hence, we use
mild augmentation throughout other experiments.

B.3. Additional Stable Diffusion results.

Copy detection for Stable Diffusion. We investigate the
extreme case where the generated sample is a memorization
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Figure 2: Copy detection results. We investigate our data attribu-
tion method when a synthesized image query is a “duplicate” of
the training data. We take duplicates found in Somepalli et al. [10],
where the images in the red box are the training image matches re-
ported by the authors. We observe that there exist multiple training
images from LAION that resemble the query, and the attribution
score dropoff (green — ) is significant between similar im-
ages and other images.

of a training point. We test with several pairs of memorized
samples and corresponding training image matches reported
in Somepalli et al. [10]. We add the training image matches
into the 1M random LAION subset used in Section 5 of
our main pair, and for each memorized sample, we assign
attribution scores to the augmented set of training images.
Results are shown in Figure 2. Our method assigns high
attribution scores to the matched training images. We also
find that there exist multiple training images similar to the
memorized samples, and that there is a significant attribution
score dropoff between similar images and the other training
images.

Stable Diffusion attribution. In Section 5 of the main
paper, we show qualitative results on attributing images gen-
erated by Stable Diffusion. Here we show additional samples
in Figure 4. In practice, for each query, we retrieve the top
10,000 images from LAION-400M and assess attribution
scores. In most cases, we find that the attribution scores are
already zero for the lower ranked images in this subset.

B.4. Additional Custom diffusion results.

Additional metrics. In Section 5 of the main paper, we use
Recall@10 for the analysis. Here we include more metrics
(Recall@1, Recall@100, mAP) and report the evaluation of
the in-domain and out-of-domain test cases in Table 2 and
Table 3, respectively. We also show that the general trend
and rankings across different methods and feature spaces
hold the same across different metrics in Figure 6.

Qualitative results on Custom Diffusion. In Sectio 5 of
the main paper, we have included qualitative comparisons
between pretrained and fine-tuned features for attributing
our Custom Diffusion dataset. We provide more qualitative

results in Figure 5.

B.5. Additional Baselines.

We evaluate additional baselines — using Stable Diffusion
as the feature extractor, and testing whether customization is
needed.

Attribution with Stable Diffusion features. In the main
paper, we use feature spaces that only analyze the images.
Here, we test an additional baseline, using Stable Diffusion
features, which also incorporates the image captions. We
feed images into the pre-trained Stable Diffusion model,
along with captions, to collect features. We use the provided
captions for LAION images, the input prompts for synthetic
images (with V* token removed), and apply captioning model
BLIP [6] for the exemplar images (as is standard practice for
captionless images [8]). Following Li ef al. [5], we obtain
the average-pooled, mid-layer, U-Net features at timestep
t = 100 (model is trained with 1000-step DDPM).

For object-centric models, this baseline obtains a lower
score (0.279) than DINO and CLIP (0.553, 0.342) at Re-
call@10. For style-centric models, the baseline (0.202) ob-
tains similar scores to DINO and CLIP (0.199, 0.201). Thus,
Stable Diffusion features do not outperform the features eval-
uated in our paper. Incorporating text to improve attribution
is an intriguing future research avenue, and our dataset can
spur future work in this area.

Learning attribution without “add-one-in” training. We
study whether “add-one-in” customization is necessary for
providing useful training signal for attribution. To investigate
this, we train on a dataset where all images are generated
without finetuning Stable Diffusion. Using the same prompts
in our dataset, we generate image variations to create real-
synthetic attribution pairs, but here V* <noun> is swapped
with the BLIP-generated caption from the real image. We
take 593 real images each from object-centric and style-
centric exemplars and synthesize 70k images in total. We
fine-tune DINO and CLIP features on this dataset and com-
pare them against those tuned on a subset of our dataset of
the same size. Tuning on our dataset leads to improvements
on vanilla features — 0.376 — 0.406 for DINO, but 0.393
for the baseline (for Recall@10). For CLIP, our method
improves results to 0.271 — 0.363, whereas the baseline
achieves 0.359. Thus, we find that tuning on our dataset
(learned from Custom Diffusion), outperforms the baseline.

C. Implementation Details

C.1. Training details for feature mappers

We initialize the linear mapper with an identity weight
matrix and zero bias. We use Adam optimizer [3] with 3; =
0.9, B2 = 0.999. We apply an initial learning rate 10~ and
decay the learning rate with a cosine schedule [7]. We set the
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Figure 3: Inference pipeline. We compute the similarity between
the synthesized and training images, using a base feature extractor
and our learned embedding. The training procedure is illustrated
in Figure 3 in the main paper. Taking a thresholded softmax with
calibrated temperature 7 and threshold A over similarities produces
influence scores.

batch size to 1024 for all cases except for ViT and ALADIN.
We use 512 due to memory constraints.

We train each model for 100 epochs, where each epoch in-
volves sampling an attribution pair from each model exactly
once. During training, we sample a minibatch of B differ-
ent models. Within each model, we randomly choose the
training image and prompting type, and we then randomly
choose the synthesized image given the prompting type.

We use the same input size and image normalization as
each base feature encoder. During training, we randomly flip,
resize, and crop to the input size. During testing, we apply
center cropping to the input size.

C.2. Details for fine-tuning on MSCOCO

We finetune Stable Diffusion models on random subset of
MSCOCO of size 1, 10, 100, or 1000. For each subset size,
we sample 4 random subsets to train 4 models and average
the results. We adopt similar finetuning technique as Custom
Diffusion, where we only tune the cross-attention weights,
but here we use MSCOCO captions to train the models
instead of associating a concept to a V* token. We adopt
the same hyperparameters used in Custom Diffusion, and
for MSCOCO with sizes 1, 10, 100, and 1000, our training
iterations are 125, 250, 500, 2000, and 20000, respectively.
We synthesize 4 samples per hold-out caption to generate
our queries, except for models trained with 1000 MSCOCO
images, we synthesize 1 sample per caption given the large

number of captions available in this test case.

C.3. Soft influence score implementation

In Section 4.2 of the main paper, we describe how we
convert and calibrate feature similarities to a percentage
assignment 1577 » via Equation 6, repeated below. We provide
additional details on how we optimize for 7 and .

ReLU (exp[(s = s@)/] — \)
>_; ReLU(exp[(st) = so)/r] = A)
ey

Recall that X is a synthetic content query, x € X+ U X de-

notes images in the exemplar-augmented training set X +UX.
We denote s as the feature similarity between X and x, and

we write them in descending order: 50y = S(1) = 0 2>

Poaxx;xtux) =

S(lxtux))-

As XTUX is a large collection of images (original dataset
X is 1M images), an exhaustive calculation would be pro-
hibitively costly. Hence, during calibration, we keep the top
R =100, 000 similarity scores individually, corresponding
to the top 10%, along with the ground truth if needed (which
is typically in the top-10% matches already). We discard
the remaining | X U X'| — R points since these terms will
likely be compressed to zero by ReLU. During optimiza-
tion, we find that directly using ReL.U leads to instability.
To resolve this, we approximate the ReLLU using a smooth
softplus function during training.

During training, we set the learning rate for 7 and \ to
be 0.5 and 0.0005, respectively, since we find that a high
learning rate for the threshold A will lead to instability. 7 and
A are initialized as 1 and 0, respectively. We set the batch
size to be 4096 and train with 200 steps. We also find that
setting the softplus 8 parameter to be 100 helps stabilize
training.

For the retrieval task, we purposely train without LAION
to avoid learning a LAION classifier. We note that tune
the influence scores on LAION, but we do not change the
learned feature similarities.
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Figure 4: Additional results on attributing Stable Diffusion Images. We show results in addition to Figure 9 of the main paper. We run
our influence score prediction function with CLIP, tuned on our Object+Style attribution datasets. In each row, we show a generated sample
query (Left), and the top attributed training images from LAION-400M (Right). Green values are calibrated influence percentage scores.
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Figure 5: Additional results on qualitative comparisons. We show results in addition to Figure 8 of the main paper. Here we show one
query from each model type (Object-Centric, Artistic-Style) and each prompting type (GPT-generated, procedurally generated prompt). We
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the base encoder. Green values are calibrated influence percentage scores. We find that our fine-tuned attribution method improves the
ranking and influence score of the exemplar training images (red-boxed images).
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Figure 6: Additional metrics. We show the same visualization as in Figure 5 in the main text with additional metrics (top: mAP, middle:
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Source ImageNet-Seen BAM-FG

Prompts GPT Medium GPT Object
Frase Method R@5 R@I0 R@100 mAP R@5 R@I10 R@100 mAP R@5 R@I10 R@100 mAP R@5 R@I0 R@100 mAP
Premined 023 0277 0437 0195 0137 0160 0274 0118 0129 0170 0310 0148 0174 0225 0374 _ 0200
Object 0350 0397 0561 0298 0.293 0336 0.503 0249 0.166 0218 0364 0.195 0216 0275 0431 0252
Syl 0277 03170478 0232 0176 0204 0346 0153 0185 0242 0405 0218 0235 0302 0472 0278
cup . ObiectrSiyle (Noreg) ~~~ 0223 0266 0453 0.180 " 0.137_ 0.169 ~ 0334 ~ 0.110 [0.107 ~ 0.148 0204 0.124” 0.141 0.187 " 0352" 0.160
Object+Style (Channel) 0238 0277 0431 0.197 0.141 0.163 0.278 0.120 0.136 0.181 0328 0.158 0.186 0.242 0406 0217
Object+Style (MLP) 0.133  0.174 0380 0.100 0.082 0.113  0.295 0.064 0.062 0.091 0226 0.074 0.079 0.114 0274 0.093
_ Object+Style (Strong Aug)_ 0326 03730539 0276 0222 0260 0434 _0.189 0176 0231 0390 0206 0224 0287 0453 0262
Object+Style 0329 0376 0540 0280 0.222 0.258 0428 0.190 0.186 0243 0408 0.219 0236 0303 0474 0278
Pretrained 0.433 0467 0579 0393 0.288 0.321 0428 0255 0.148 0.184 0.293  0.163 0.193 0239 0360 0.219

DINO " Object+Style (Channel) ~ ~ 0.377 ~ 0.409 0. 5227 70337 02337 0259 © 0367 0204 0.109  0.137 0 2327 0118 0.148 0.182° 0 2917 0.163

Object+Style (MLP) 0.171
Object+Style (Strong Aug.) 0.473

Object+Style

Pretrained

MoCo Style

Object+Style (No reg.)

Object+Style

Pretrained

ViT Style 0357 039% 0539 0314 0253 0290 0432 0219 0.182 0230 0359 0209 0231 0288 0425 0270

Object+Style

Pretrained

ALADIN Style 012 0131 0206 0095 0079 0088 0.127 0070 0.150 0200 0329 0.181 0247 0322 0485 0300

Object+Style

Pretrained

Object+Style

Table 2: Evaluation for in-domain test cases. Along with Table 3, these evaluations are visualized in Figure 6, and Figure 5,6,7 in the main
text.



Source ImageNet-Unseen Artchive
Prompts GPT Medium GPT Object
Frase Method R@5 R@10 R@I00 mAP R@5 R@I0 R@100 mAP R@5 R@I0 R@100 mAP R@5 R@I10 R@I100 mAP
Pretrained 0.580 0.644
" Object 0710~ 0.754  0.868 0.645 0511 0.567 0.733 0447 0249 0305 0512 0282 088 0231 0396 0.207
Style 0.664 0.716
cLp  Object+Style (Noreg) 0524 "0.588 ~ 0.777 0438 " 0.275_ 0327 ~ 0.517 ~ 0220 0.057 - 0078~ 0.185 " 0.059" 0.042 ~0.059 ~0.145 " ~0.043 -
Object+Style (Channel) 0.593  0.653
Object+Style (MLP) 0346  0.427
Object+Style (Strong Aug.) 0.697  0.744
" Object+Style 0701 ~0.745 0.864  0.633 0389 0445 0.628 0332 0259 0317 0550 0297 0200 0247 0437 0223
Pretrained 0.831 0.851
" Object 0.842 ~0.861 0.909 0.809 0.622° 0.654 0738 0574 0225 0260 038 0232 0.75 0203 0303 0.176
Style 0.838  0.858
piNo  Object+Style (Noreg) ~ ~~ 0.646 0.692 0.823 ° 0.574 ~0.361 0404 ~ 0.544 ~ 0.308° 0.062 0082~ 0.183 0058~ 0045 ~0.058 _ 0.I39 " 0.041
Object+Style (Channel) 0.784  0.809
Object+Style (MLP) 0335 0413
Object+Style (Strong Aug.) 0.842  0.861
" Object+Style  ~~~ 0.842 0.861 0908 0.810 0.598 0.629 0.714 0549 0217 0248 0374 0221 0.170 0.194 0294 0.169
Pretrained 0.786
" Object 0792 0.813° 0.874 0753 05427 0573  0.658 0490 0215 0250 0387 0218 0.172 0201 0312 0.072
MoCo Style 0.806
" Object+Style Noreg) ~ 0.655 0.694  0.805 0.580 0.384 0424 0552 0332 0056 0.075 0171 0.054 0042 0.055 0.134 0.039
" Object+Style 0791 0.813 0.874 0753 0519 0551 0636 0467 0208 0242 0377 0209 0.165 0.193 0304 0.165
Pretrained 0.821
" Object 0818 0.844 7 0908 0.773 0567 0615 0749 0505 0.192 0226 0368 0200 0.146 0.171 0278 0.148
ViT Style 0.820
" Object+Style Noreg) 0515 0585 0.784 0423 0297 0353 0541 0238 0.061 0082 0.184 0.058 0.046 0.061 0.148 0.042
" Object+Style ~~~ 0.820 0.847 0912 0772 0539 0590 0737 0474 0206 0244 " 0398 0216 0.159 0.187 0308 0.163
Pretrained 0.388
" Object 0471 0506 0.621 0427 0202 0220 0295 0.182 0206 0250 0425 0219 0.185 0.228 0.396 0.200
ALADIN  Style 0.380
" Object+Style Noreg) 0264 0317 0510 0208 0.115 0.140 0237 0.092 0.063 008 0201 0.059 0.060 0.081 0.190 0.057
" Object+Style 0443 0481 0.604 0396 0.172° 0.186  0.249
Pretrained 0.627
" Object 0622 0.644 0713 0588 0285 0302 0366 0264 0.059 0179 0255 0.51 0.133 0.149 0215 0.125
SSCD Style 0.623
" Object+Style Noreg) 0141 0.171 0296 0.113 0.055 0.065 0.113 0044 0.020 0026 0071 0017 0018 0.024 0.063 0.015
" Object+Style 0621 0.644 0714 0586 0282 0298 0362 0261 0.059 0179 0254 0.150 0.131 0.148 0213 0.123

Table 3: Evaluation for out-of-domain test cases. Along with Table 2, these evaluations are visualized in Figure 6, and Figure 5,6,7 in the
main text..
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