
ExposureDiffusion: Learning to Expose for Low-light Image Enhancement
Supplementary Material

Yufei Wang1, Yi Yu1, Wenhan Yang2, Lanqing Guo1, Lap-Pui Chau3, Alex C. Kot1, Bihan Wen1*

1Nanyang Technological University 2Peng Cheng Laboratory
3The Hong Kong Polytechnic University

{yufei001, yuyi0010, lanqing001, eackot, bihan.wen}@ntu.edu.sg
yangwh@pcl.ac.cn lap-pui.chau@polyu.edu.hk

1. Detail of proofs

The detailed proof of Eq. (7) in the main paper is as
follows where Jensen’s inequality is used
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Since modeling the ground-truth exposure process requires
scene irradiation, we need to use a new variable Xref , that
is, a ground-truth image ideally without noise, in our deriva-
tion. However, X0 may not be noise-free, so an extra step
is conducted to further remove the noise in X0, resulting in
X̂ref = FΘ(X0), as illustrated in algorithms presented in
the main paper

For the image reconstruction loss, we aim to min-
imize the KL divergence between pΘ(Xt−1|Xt) and
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Figure 1: The reverse (denoise) process of the vanilla con-
ditional diffusion model [3] combined with the sampling
strategy from DDIM [4]. The image restoration process
starts with pure noise and gradually removes noise in it. The
noise in each middle step is expected to obey Gaussian dis-
tribution so that the low-light image is not any step in it.

q(Xt−1|Xt, Xref ) as follows
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∫
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We do not observe an obvious difference of the converged
performance between using L1 divergence and KL diver-
gence. The reason may be that even for the long expo-
sure images, e.g., the reference images we used in the SID
dataset, they are still not noise free. Specifically, compared
to L1 loss, KL loss may be more susceptible to the influ-
ence of noise with smaller values in non-ideal situations.
For simplicity, we utilize L1 loss as a substitution. Follow-
ing previous works that find using the same weighting for
losses from different steps achieves slightly better perfor-
mance, we keep the weight of the reconstruction loss for
each step the same.
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Figure 2: The convergence of the performance under a dif-
ferent number of inference steps. The performances are
evaluated on the ×100 task of SID [1] and models are
trained with P+G noise model. The diffusion model and the
proposed model have a similar number of parameters and
FLOPs as shown in Table 1 (b). The proposed method can
get converged much faster than DDIM, leading to smaller
inference overhead.

2. Comparison with diffusion models

Experiment setup. To further demonstrate the superior-
ity of the method compared with vanilla diffusion models,
we compare the proposed method with a conditional diffu-
sion model adopting the condition strategy of [3] and sam-
pling strategy of DDIM [4]. Specifically, similar to [3], the
low-light image is concatenated as a part of the input. The
original backbone of [4] includes more than 100M param-
eters and 2T FLOPs for a single step of a 512 × 512 im-
age patch, which is not feasible for raw images with much
higher resolution, e.g., 4246×2840. Therefore, we slightly
adjust the number of channels and blocks to obtain a simi-
lar model size to the commonly used backbone in raw low-
light image enhancement tasks [5, 2]. The quantitative re-
sults are reported in Table 1. Our method outperforms the
conditional diffusion model by a large margin when using a
model with similar size.

Visualization of vanilla diffusion models. The visualiza-
tion of the vanilla conditional diffusion models is illustrated
in Fig. 3 and 1. Specifically, Fig. 3 is the inverse process
that gradually removes noise from a pure noise image. For
most of its middle steps, the signal-noise ratio is even lower
than that of the input, causing extra inference steps. Be-
sides, for each middle step, the noise is expected to obey
the Gaussian distribution, which is different from the real
noise distribution. Besides, the estimated clean image of
each step is shown in Fig. 1. From the results, we can find
while the quality of the reconstructed image gradually im-
proved, there is still intense residual noise even in images
of the last few steps. We conjecture the reason is that the
noise distribution of the inference process is different from
the training one due to cumulative error so the noise can not
be effectively removed in the last few steps. We find that
the needed number of inference steps are closely related to

the noise level, e.g., ISO and exposure time. An adaptive
algorithm for deciding the number of inference steps may
be left for future work.

The convergence. The comparison of the convergence
speed for inference between the proposed method and the
vanilla one can be seen in Fig. 2. The vanilla diffu-
sion model needs a relatively large number (e.g., around 10
steps) of inference steps to get converged since they need to
denoise from pure noise, which hinders potential applica-
tions. The proposed method can get converged quickly in a
few steps for the cases the input is not very dark, e.g., ×100
task, and the improvement mainly from the proposed train-
ing mechanism. On the contrary, for the harder cases, iter-
ative refinement can significantly improve the performance
as shown in Fig. 6 in the main paper. For the convergence
of training, we find that the vanilla diffusion-based method
requires a larger batch size and more epochs, e.g., we train
the vanilla conditional diffusion models for 10000 epochs
with a batch size of 64 on four RTX A5000s. While the
proposed model can be well converged and trained on only
one RTX A5000 with a batch size of 1 and epoch of 300.

Quantitative results. As we can see in Table 1, the diffu-
sion models are very sensitive to the capacity of the model
size, e.g., the larger vanilla diffusion model can achieve
much better performance than that of a smaller one. Be-
sides, although the model ”Diffusion-based-1” has more pa-
rameters and FLOPs than the backbone we used, it achieves
much worse performance than the proposed method. The
reason may be that the vanilla conditional diffusion models
need more network capacity to learn the denoising of Gaus-
sian noise with different noise levels.

3. Experiment details

For the detailed settings of experiments, we mainly fol-
low the settings of ELD [5]. Specifically, we adopt the re-
leased noise parameters, and the basic noise model P +
G from [5]. We implement their proposed noise model
P + G∗ + r + u and the training on-the-fly manner by
ourselves and achieve closing results with the reported in
the paper. For the experiments based on PMN [2], e.g.,
the results in Table 4 in the main paper, we follow their
training strategy, e.g., the same batch size, data augmenta-
tion strategy, and learning rate. However, PMN [2] adapts
a slightly different evaluation strategy with ELD [5], e.g.,
different evaluation set. To unify the results, we adopt
the same evaluation strategy as ELD [5] for all experi-
ments. For the schedule of λt, we adopt the linear sched-
uler, e.g., the exposure time of each step for the ×300 task
is [λT , 100 · λT , 200 · λT , 300 · λT ].



Figure 3: The diffusion process of the vanilla conditional diffusion model [3] combined with the sampling strategy from
DDIM [4]. The image restoration process starts with pure noise and gradually removes noise in it.

Model PSNR / SSIM

×100
UNet 38.88 / 0.901

Diffusion-based-1 33.47 / 0.851
Diffusion-based-2 25.13 / 0.539

×250
UNet 36.02 / 0.832

Diffusion-based-1 31.98 / 0.823
Diffusion-based-2 24.79 / 0.529

×300
UNet 34.59 / 0.798

Diffusion-based-1 31.39 / 0.807
Diffusion-based-2 22.65 / 0.527

(a) Performance with different models.

Model Parameters FLOPs

Ours (UNet-based) 7.762M 55.17G
Diffusion-based-1 8.619M 367.15G
Diffusion-based-2 1.472M 63.07G

(b) Computational cost of each model.

Table 1: Performance of models w/ and w/o the proposed
method under different noise models and backbones on
SID [1] dataset. The models are trained on P+G noise
model.

4. More visualization results

More results on SID [1] and ELD [5] are shown in Fig. 4,
Fig. 5, and Fig. 6. The non-deep based method and the deep
model trained without reference images are likely to suffer
serious color distortion. The proposed method achieves the
best perceptual quality overall, i.e., less color distortion and
better details even compared with P+G which are trained
under the same noise model and backbone network.
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Figure 4: Visual comparison of low-light image enhancement results on SID [1]. We use the same backbone and noise model
as P+G. All the images are passed through ISP using the same white balance for better visualization.



Figure 5: Visual comparison of low-light image enhancement results on SID [1]. We use the same backbone and noise model
as P+G. All the images are passed through ISP using the same white balance for better visualization.



Figure 6: Visual comparison of low-light image enhancement results on ELD [5]. We use the same backbone and noise
model as P+G. All the images are passed through ISP using the same white balance for better visualization.


