
Get the Best of Both Worlds: Improving Accuracy and Transferability by
Grassmann Class Representation Supplementary Material

Haoqi Wang* Zhizhong Li** Wayne Zhang†

haoqi.wang@epfl.ch {lizz,wayne.zhang}@sensetime.com

In this supplementary material, we provide experimental
results and implementation details that were omitted in the
main paper due to space limitations.

A. An Alternative Form of Riemannian SGD
As discussed in Section 4.2, an important ingredient of the

geometric optimization algorithm is to move a point in the
direction of a tangent vector while staying on the manifold
(e.g., see the example in Fig. 1). This is accomplished by
the retraction operation (please refer to [1, Section 4.1] for
its mathematical definition). In the fourth step of Alg. 1,
the retraction is implemented by computing the geodesic
curve on the manifold that is tangent to the vector M (t). An
alternative implementation of retraction other than moving
parameters along the geodesic is to replace step 4 with the
Euclidean gradient update S(t+1) ← S(t) + τM (t) and
then follow by the orthogonalization described in step 5.
In this case, step 5 is not optional anymore since S(t+1)

will move away from the Grassmannian after the Euclidean
gradient update. The orthogonalization pulls S(t+1) back to
the Grassmann manifold. For ease of reference, we call this
version of Riemannian SGD as Alg. 1 variant. We compare
the two implementations in Tab. 7. The results show that the
Grassmann class representation is effective on both versions
of Riemannian SGD. We choose Alg. 1 because it is faster
than the Alg. 1 variant. The thin SVD used in Equ. (3) can be
efficiently computed via the gesvda approximate algorithm
provided by the cuSOLVER library, which is faster than a
QR decomposition on GPUs (see Tab. 9).

B. Details on Step 5 of Algorithm 1
The numerical inaccuracy is caused by the accumulation

of tiny computational errors of Equ. (3). After running many
iterations, the matrix S might not be perfectly orthogonal.
For example, after 100, 1000, and 5000 iterations of the
Grassmannian ResNet50-D with subspace dimension k = 8,
we observed that the error max i∥ST

i Si − I∥∞ is 1.9e-5,
9.6e-5 and 3.7e-4, respectively. After 50 epochs, the error

* Equal contribution.
† Corresponding author: Wayne Zhang.

Table 7: Validation accuracy of Grassmann ResNet50-D on
ImageNet with different retractions. The first row uses the
exponential map, i.e., moving along geodesics, as retraction,
while the second row uses the Q factor of QR decomposition,
i.e., the qf function, as retraction.

Setting Optimizer Retraction Top1 Top5

Alg. 1 RSGD+SGD Geodesic 79.26 94.44
Alg. 1 Variant RSGD+SGD qf 79.13 94.45

Table 8: Validation accuracy of ResNet50-D on ImageNet
trained with good initialization. Both rows use the weights
of a ResNet50-D trained on ImageNet using the regular
softmax. The first row fixes the backbone parameters, and
solely learns the Grassmann fc layer, while the second row
learns all parameters.

Setting k Initialization Fine-Tune Top1 Top5

GCR 8 Softmax pre-trained
Last layer 78.14 93.97
All layers 79.44 94.58

accumulates to 0.0075. So, we run step 5 every 5 iterations
to keep both the inaccuracies and the extra computational
cost at a low level at the same time.

C. The Importance of Joint Training

The joint training of the class subspaces and the features
is essential. To support this claim, we add an experiment
(first row of Tab. 8) that only fine-tunes the class subspaces
from weights pre-trained using the regular softmax. We find
that if the feature is fixed, changing the regular fc to the
geometric version does not increase performance noticeably
(top-1 from 78.04% of the regular softmax version to 78.14%
of the Grassmann version). For comparison, we also add
another experiment that fine-tunes all parameters (second
row of Tab. 8). But when all parameters are free to learn, the
pre-trained weights provide a good initialization that boosts
the top-1 to 79.44%.

Table 9: SVD and QR time (in ms) on Intel Xeon Gold 6146
(48) @ 3.201GHz and Nvidia V100 using PyTorch 1.13.1.
The tested matrices are filled by Gaussian noises and have
the shape of num classes × feature dimension × subspace
dimension, which are the typical sizes encountered in Alg. 1
when training ImageNet-1K.

SVD QR
Tensor Shape CPU GPU CPU GPU

1000× 2048× 1 5.1 20.0 2.6 36.5
1000× 2048× 2 11.3 20.7 7.8 46.0
1000× 2048× 4 59.9 21.2 18.8 56.3
1000× 2048× 8 138.0 23.2 78.8 70.9
1000× 2048× 16 352.9 25.2 200.5 118.5
1000× 2048× 32 1020.1 30.8 626.8 224.6

D. Influence on Training Speed

During training, the most costly operation in Alg. 1 is
SVD. The time of SVD and QR on typical matrix sizes
encountered in an iteration of Alg. 1 is benchmarked in
Tab. 9. We can see that (1) SVD (with gesvda solver) is faster
QR decomposition, and (2), when the subspace dimension is
no greater than 2, CPU is faster than GPU. Based on these
observations, in our implementation, we compute SVD on
CPU when k ≤ 2 and on GPU in other cases. Overall, when
computing SVD, it adds roughly 5ms to 30ms overhead to
the iteration time.

To measure the actual impact on training speed, we show
the average iteration time (including a full forward pass and a
full backward pass) of the vector class representation version
vs. the Grassmann class representation version on different
network architectures in Fig. 4. Overall, the Grassmann
class representation adds about 0.3% (Deit3-S) to 35.0%
(ResNet50-D) overhead. The larger the model, and the large
the batch size, the smaller the relative computational cost.

E. More Visualizations on Principal Angles

Due to limited space, we only showed the visualization
of the maximum and the minimum principal angles in Fig. 3.
Here, we illustrate all eight principal angles in the GCR
(k = 8) setting in Fig. 5.

F. Details on the Intra-Class Variability

In Section 5.2, we introduced the intra-class variability
which is defined as the mean pairwise angles (in degrees)
between features within the same class and then averaged
over all classes. For models trained on the ImageNet-1K,
we randomly sampled 200K training samples and use their
global-centered feature to compute the intra-class variability.
Suppose the set of global-centered features of class i is Fi,

Figure 4: Compare the iteration time (in ms) between vector
class representation and Grassmann class representation (k = 8)
using different network architectures. Blue bars are networks with
the original vector class representation and the orange bars are
networks with the Grassmann class representation. The bs 8×32
means that the batch size is 256, distributed across 8 GPUs and
there are 32 samples per GPU.

Table 10: Details of the transfer datasets. The number of
classes, the size of the training set and the testing set (or the
validation set if no testing set or label of the testing set is not
available), and the metric used to report the accuracies.

Dataset Classes Size (Train/Test) Accuracy

CIFAR-10 [7], 10 50000/10000 top-1
CIFAR-100 [7], 10 50000/10000 top-1
Food-101 [3] 101 75750/25250 top-1
Oxford-IIIT Pets [10] 37 3680/3369 mean per-class
Stanford Cars [6] 196 8144/8041 top-1
Oxford 102 Flowers [9] 102 6552/818 mean per-class

then

variability :=
1

C |Fi|2
C∑
i=1

∑
xj ,xk∈Fi

∠(xj ,xk) (12)

where C is the number of classes, ∠(·, ·) is the angle (in
degree) between two vectors, and |Fi| is the cardinality of
the set Fi.

G. Details on Transfer Datasets
In this section, we give the details of the datasets that

are used in the feature transferability experiments. They are
CIFAR-10 [7], CIFAR-100 [7], Food-101 [3], Oxford-IIIT
Pets [10], Stanford Cars [6], and Oxford 102 Flowers [9].
The number of classes and the sizes of the training set and
testing set are shown in Tab. 10.

H. Details on Linear SVM Hyperparameter
In Tab. 3, we used five-fold cross-validation on the

training set to determine the regularization parameter of

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5: Each sub-figure is a heatmap of 1000× 1000 grids. The
color at the i-th row and the j-th column represent an angle between
class i and class j in ImageNet-1K. Pairwise smallest (a)-(h) are
pairwise principal angles between 8-dimensional class subspaces
of a ResNet50-D model. (a) shows the smallest principal angels
between any pair of classes; (b) shows the second smallest principal
angles between any pair of classes; etc. Deeper Blue colors mean
that their angles are smaller. Grayish colors mean the angles are
close to 90◦. Best viewed on screen with colors.

the linear SVM. The parameter is searched in the set
[0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20]. Tab. 11 lists the selected
regularization parameter of each setting. Both the cross-
validation procedure and the SVM are implemented using
the sklearn package. As a pre-processing step, the features
are divided by the average norm of the respective training
set, so that SVMs are easier to converge. The max iteration
of SVM is set to 10,000.

I. Feature Transfer Using KNN

In Tab. 3, we have tested the feature transferability using
linear SVM. Here we provide transfer results by KNN in
Tab. 12. The hyperparameter K in KNN is determined by
five-fold cross-validation on the training set. The candidate
values are 1, 3, 5, . . . , 49. Our GCR demonstrates the best
performance both on both CNNs and Vision Transformers.

Table 11: Regularization hyperparameter of SVM used in
the linear feature transfer experiment. The hyperparameters
are determined by five-fold cross-validation on the training
sets. C10 means CIFAR10 and C100 means CIFAR100.

Setting Hyper-Parameter of SVM
Name k C10 C100 Food Pets Cars Flowers

Softmax [4] 10 5 10 0.5 5 10
CosineSoftmax [5] 1 1 1 2 1 2
LabelSmoothing [12] 10 5 5 2 5 10
Dropout [11] 5 5 10 2 15 5
Sigmoid [2] 10 5 5 2 10 15

GCR (Ours)

1 1 0.5 0.5 1 1 2
4 1 0.5 0.5 5 2 5
8 1 0.5 0.5 1 1 2

16 1 0.5 0.5 1 2 5
32 1 1 0.5 2 2 2

Swin-T [8] 1 1 1 1 2 5
Swin-T GCR 8 0.5 1 1 2 2 10
Deit3-S [13] 2 2 2 2 5 10
Deit3-S GCR 8 1 1 0.5 0.5 2 2

For the ResNet50-D backbone, Grassmann with k = 32
has a better performance in both classification accuracy and
transferability than all the baseline methods. On Swin-T,
our method surpasses the original Swin-T by 2.76% on aver-
age. On Deit3-S, our method is 13.81% points better than
the original Deit3-S. The experiments on KNN reinforced
our conclusion that GCR improves large-scale classification
accuracy and feature transferability simultaneously.

References
[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Opti-

mization algorithms on matrix manifolds. In Optimization
Algorithms on Matrix Manifolds. Princeton University Press,
2009.

[2] Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xi-
aohua Zhai, and Aäron van den Oord. Are we done with
imagenet? arXiv preprint arXiv:2006.07159, 2020.

[3] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101–mining discriminative components with random
forests. In European conference on computer vision, pages
446–461. Springer, 2014.

[4] John S Bridle. Probabilistic interpretation of feedforward
classification network outputs, with relationships to statistical
pattern recognition. In Neurocomputing: Algorithms, archi-
tectures and applications, pages 227–236. Springer, 1990.

[5] Simon Kornblith, Ting Chen, Honglak Lee, and Mohammad
Norouzi. Why do better loss functions lead to less transferable
features? In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[6] Jonathan Krause, Jia Deng, Michael Stark, and Li Fei-Fei.
Collecting a large-scale dataset of fine-grained cars. 2013.

Table 12: Linear transfer using KNN for different losses and different backbones. All model weights are pre-trained on
ImageNet-1K. In the first two sections, ResNet50-D is used as the backbone, and in the last section, Swin-T and Deit3-S are
tested.

Setting Linear Transfer (KNN)
Name k CIFAR10 CIFAR100 Food Pets Cars Flowers Avg.

Softmax [4] 87.24 56.67 57.62 90.46 27.99 84.23 67.37
CosineSoftmax [5] 85.09 51.40 47.46 87.14 22.34 70.54 60.66
LabelSmoothing [12] 86.46 54.24 52.63 90.60 24.56 79.22 64.62
Dropout [11] 86.43 53.83 52.59 89.81 24.28 77.51 64.08
Sigmoid [2] 87.96 58.27 57.47 90.54 27.22 84.47 67.66

GCR (Ours)

1 86.65 52.72 46.83 86.73 21.58 66.99 60.25
4 86.62 54.16 51.34 88.28 26.39 73.11 63.32
8 86.84 55.64 53.31 87.93 27.97 79.22 65.15

16 87.34 57.31 55.26 89.64 29.64 84.60 67.30
32 86.96 56.39 56.88 89.75 30.31 87.04 67.89

Swin-T [8] 90.59 59.27 62.46 90.27 28.65 87.29 69.76
Swin-T GCR 8 91.38 62.04 66.57 91.91 32.40 90.83 72.52
Deit3-S [13] 86.04 50.54 45.47 88.12 18.22 63.69 58.68
Deit3-S GCR 8 91.64 63.80 65.18 91.80 33.88 88.63 72.49

[7] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[8] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021.

[9] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722–729. IEEE, 2008.

[10] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
CV Jawahar. Cats and dogs. In 2012 IEEE conference on
computer vision and pattern recognition, pages 3498–3505.
IEEE, 2012.

[11] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014.

[12] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
2818–2826, 2016.

[13] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii:
Revenge of the vit. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXIV, pages 516–533. Springer, 2022.

