
GridMM: Grid Memory Map for Vision-and-Language Navigation
— Supplementary Material —

Zihan Wang1,2, Xiangyang Li1,2, Jiahao Yang1,2, Yeqi Liu1,2, Shuqiang Jiang1,2

1Key Lab of Intelligent Information Processing Laboratory of the Chinese Academy of Sciences (CAS),
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China

2University of Chinese Academy of Sciences, Beijing, 100049, China
zihan.wang@vipl.ict.ac.cn, lixiangyang@ict.ac.cn,

{jiahao.yang, yeqi.liu}@vipl.ict.ac.cn, sqjiang@ict.ac.cn

https://github.com/MrZihan/GridMM

A. Datasets

We evaluate our approach in discrete environments (e.g.,
R2R [2], REVERIE [11], and SOON [15]), and further an-
alyze many characteristics of our approach in continuous
environments (e.g., R2R-CE [9] and RxR-CE [10]).

All the benchmarks in discrete environments build upon
the Matterport3D environment [3] and contain 90 photo-
realistic houses. Each house contains a set of navigable lo-
cations, and each location is represented by the correspond-
ing panorama image and GPS coordinates. We adopt the
standard split of houses into training, val seen, val unseen,
and test splits. Houses in the val seen split are the same as
in training, while houses in val unseen and test splits are
different from training. All splits in discrete environments
are consistent with Chen et al. [4].

R2R-CE [9] transfers the discrete paths in R2R dataset to
continuous trajectories on the Habitat simulator [13]. RxR-
CE [10] transfers the discrete paths in RxR dataset to con-
tinuous trajectories on the Habitat simulator [13].

B. Performance in RxR-CE

Method TL NE↓ SR↑ SPL↑ nDTW↑ SDTW↑
VLN-CE [9] 7.33 12.1 13.93 11.96 30.86 11.01

CMA [8] 20.04 10.4 24.08 19.07 37.39 18.65
VLNBERT [8] 20.09 10.4 24.85 19.61 37.30 19.05

DUET [4](Ours) 21.48 9.78 29.93 23.12 42.46 25.39
GridMM (Ours) 21.13 8.42 36.26 30.14 48.17 33.65

Table 1. Evaluation on the test unseen split of RxR-CE dataset.

As shown in Table 1, our GridMM achieves competitive
results on longer trajectory navigation such as RxR-CE.

C. Experimental Details
C.1. Training Details

For the REVERIE dataset, we combine the original
dataset with augmented data synthesized by DUET [4] to
pre-train our model with a batch size of 32 and a learning
rate of 5e-5 for 100k iterations, using 3 NVIDIA RTX3090
GPUs. Then we fine-tune it with the batch size of 4 and a
learning rate of 1e-5 for 50k iterations on 3 GPUs.

For the SOON dataset, we only use the original data with
automatically cleaned object bounding boxes, sharing the
same settings with DUET [4]. We pre-train the model with a
batch size of 16 and a learning rate of 5e-5 for 40k iterations
using 3 GPUs, and then fine-tune it with a batch size of 2
and a learning rate of 5e-5 for 20k iterations on 3 GPUs.

For the R2R dataset, additional augmented data in [7] is
used for pre-training following DUET [4]. Using 3 GPUs,
we pre-train our model with a batch size of 32 and a learn-
ing rate of 5e-5 for 100k iterations. Then we fine-tune it
with the batch size of 4 and a learning rate of 1e-5 for 50k
iterations on 3 GPUs.

For the R2R-CE dataset, we transfer the model pre-
trained on the R2R dataset to continuous environments, and
fine-tune it with a batch size of 8 and a learning rate of 1e-5
for 30 epochs using 3 RTX3090 GPUs.

For all the datasets, the best model is selected by SPL on
the val unseen split.

C.2. Ablation Details

Top-down semantic map. We follow CM2 [6] to obtain
a 448×448 top-down semantic map. Specifically, we use
a pre-trained UNet [12] from CM2 [6] to produce seman-
tic segmentation of observation images, and then project
pixels into a unified top-down semantic map. After divid-
ing the top-down semantic map into multiple patches with a
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scale of 32×32, a convolution layer is used to encode these
patches into embeddings with a hidden size of 768. We take
these semantic embeddings as the map features.

Map with object features. A pre-trained detection model
VinVL [14] is utilized to detect multiple objects in each
view image, and then we take 10 object features with the
highest confidence score as substitutes for grid features. For
the coordinate of each object, it is obtained via the center
point of the bounding box.

D. Analysis of Computational Cost
Referring to [5], we describe how we calculate the num-

ber of Floating-point Operations (FLOPs) in VLN models
as follows:

1) Matrix multiplication (Am×k ×Bk×n):

2mkn FLOPs

2) 2-layer MLP (sequence length s, increase the hidden
size to 4h and then reduces it back to h):

16sh2 FLOPs

3) Self-attantion block (sequence length s, hidden size
h):

4s2h+ 8sh2 FLOPs

4) Cross-attantion block (query sequence length s, key
and value sequence length t, hidden size h):

4sh2 + 4th2 + 4sth FLOPs
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Figure 1. GFLOPs at different trajectory lengths keeping instruc-
tion length as 32. The computational cost of visual encoders and
text encoders is omitted for a more intuitive comparison.

We calculate GFLOPs (Giga Floating-point Operations)
on the R2R dataset, as illustrated in Fig. 1 and Fig. 2.
“GridMM w/o cache” denotes that our GridMM updates
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Figure 2. GFLOPs with different instruction lengths keeping tra-
jectory length as 15. The computational cost of visual encoders
and text encoders is omitted for a more intuitive comparison.

each cell of the grid map in all navigation steps without
any cache. By using the cache (which stores previous re-
sults for later use), the computational cost is significantly
reduced. For the same grid features in all navigation steps,
during updating the cells of the grid map, we only need to
recompute the positions of grid features, without recomput-
ing their relevance value in the relevance matrix with the
instruction. The reason is that, for Equations (6) and (9),
the outputs of ĝt,jW

A
1 (where ĝt,j is a part of Mrel

t,m,n),
W ′

WA
2 and WE ĝt,j in all navigation steps is the same and

can be cached for reuse. GFLOPs of “GridMM w/ cache”
are significantly lower than that of BEVBert [1]. During
attention computation, the number of metric map features
in BEVBert exceeds 400, introducing a huge computational
cost. However, the number of map features in GridMM is
less than 200 and they are only used as key and value to-
kens in cross-attention computation, which greatly reduces
the computational cost.
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