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In this supplementary, we first prove that the curva-
ture similarity is translation, rotation, and scaling invariant.
Then, we detail the principal curvature calculation, ellip-
soid fitting and radii calculation algorithms. Last, we pro-
vide additional discussion and results to our new curvature
similarity estimator.

1. Proof of Curvature Similarity Invariance

As mentioned in the main paper, the normal curvature
kn ∈ R measures how curved the surface S ∈ C2 is at a
surface point p along a direction d. By definition [3], the
curvature k(l) = |α′′(l)|, where α : I → R3 is the curve
parameterized by the arc length l, α′(l) is the tangent vector.
Note that by a change in the orientation and position, the
value of arc length l does not change. Thus, the curvature
is invariant to translation and rotation. We refer the readers
to [3] for the definition of curvatures and the mathematical
form of the proof.
Proof: We define the curvature similarity as

S(k1, k2) =
min(|k1| , |k2|)
max(|k1| , |k2|)

, (0 ≤ S(k) ≤ 1). (1)

(1) Since the normal curvatures are invariant to translation
and rotation, the value of curvature similarity S(k1, k2) re-
mains the same after these operations.
(2) The normal curvature is not invariant to scaling as the
scaling affects the arc length s. Following [6], we consider
a point on the surface with arbitrary normal curvature k, and
the normal curvature k′ after the surface scaling with factor
a (a ̸= 0). The scaling alters the arc length. Thus, we have

k′ =
dα′

dal
=

1

a

dα′

dl
=

1

a
k. (2)

As a result, both the minimal and maximum normal cur-
vatures are changed by the same factor, and we have the

curvature similarity

S′(k1, k2) =
min(

∣∣ 1
ak1

∣∣ , ∣∣ 1ak2∣∣)
max(

∣∣ 1
ak1

∣∣ , ∣∣ 1ak2∣∣)
=

1
a min(|k1| , |k2|)
1
a max(|k1| , |k2|)

= S(k1, k2).

(3)

Therefore, after scaling, the value of curvature similarity
is unchanged and S(k1, k2) is invariant to translation, rota-
tion, and scaling.

2. Principal Curvature Calculation
The principal curvatures are obtained by calculating the

partial derivative of kn w.r.t. λ and making it zero. Where
kn is

kn =
L+ 2Mλ+Nλ2

E + 2Fλ+Gλ2
. (4)

from the main paper. Then, we have the following equa-
tions:

k1k2 = K =
LN −M2

EG− F 2
, (5)

k1 + k2 = 2H =
LG− 2MF +NE

EG− F 2
, (6)

where K, H are the Gaussian and mean curvatures. The
two real roots are the estimated principal curvatures at pi =
(u, v, Zi(u, v)) ∈ Pi, where

k1, k2 = H ±
√
H2 −K, (7)

where H is the mean curvature and K is the Gaussian cur-
vature in the main paper.

3. Ellipsoid Fitting with Constraints
Similar to the ellipsoid fitting approach in [4], we show

that the general function for an ellipsoid with point p′ =



[0, 0, 0]T on the ellipsoid is

ax2 + by2 + cz2 + 2dyz + 2exz+

2fyz + 2gx+ 2hy + 2iz + j = 0.
(8)

and with the constraint

4M −N2 = 1, (9)

where

N = a+ b+ c,

M = ab+ bc+ ac− d2 − e2 − f2,

For each point pi = [ui, vi, zi]
T in the point set, it should

satisfy Eq. (8) with the constraint Eq. (9). Then, we define

Xi = [u2
i , v

2
i , z

2
i , 2vizi, 2uizi, 2uivi, 2ui, 2vi, 2zi]

T, (10)

and formulate a least square fitting problem that minimizes
the algebraic distance

min||Cv||2 s.t. 4M −N2 = 1 (11)

Where C is coefficient matrix

C = [X1,X2,X3, ...,Xn] (12)

and
v = [a, b, c, d, e, f, g, h, i]T (13)

For constraint Eq. (9), we write it in a matrix form that

v1
TK1v1 = 1 (14)

Where v1 = [a, b, c, d, e, f ], and K1 is a 6 ∗ 6 matrix that

K1 =


−1 1 1 0 0 0
1 −1 1 0 0 0
1 1 −1 0 0 0
0 0 0 −4 0 0
0 0 0 0 −4 0
0 0 0 0 0 −4

 (15)

Taking all variables into consideration, we rewrite the con-
dition function as vTKv = 1, and define

K =

[
K1 06×3

03×6 03×3

]
(16)

Minimizing the Eq. (11) becomes solving the equation with
constraint by the Lagrange multiplier approach

L(v, λ) = ||Cv||2 − λ(vTKv − 1) (17)

where λ is the Lagrange multiplier, and we solve the equa-
tion by setting ∂L/∂v = 0, ∂L/∂λ = 0. The following
equations are obtained

CCTv = λKv (18)

and
vTKv = 1 (19)

Eq. (18) is a general eigenvalue system, v and λ can be
solved by the Eigen decomposition. To obtain the semi-
axes of the ellipsoid, we need to determine the centre of the
ellipsoid first. Recall from the main paper that we have the
matrix form of an ellipsoid

xQxT + 2PxT + R = 0 (20)

where

Q =

a d e
d b f
e f c

 , P =
[
g h i

]
Assuming that an ellipsoid is centred at the origin and
moves to centre c = (cx, cy, cz), We compute c by

c = Q−1P (21)

At the same time, the length of semi-axes in an ellipsoid
remains the same. Thus, we have

(x− c)TQ(x− c)− cTQc+R = 0 (22)

Divide by cTQc−R, we have

(x− c)TU(x− c) = 1 (23)

where

U =
Q

cTQc−R
(24)

Since Eq. (23) is the standard form of an ellipsoid with the
centre c, the semi-axes R = (α, β, γ) of the ellipsoid are
the square root of reciprocals of eigenvalues of U.

4. Additional Baselines
We consider baselines that directly encode the geomet-

ric embeddings from the monocular depth estimator and
curvature estimator to enhance the features for matching.
Specifically, we conduct experiments with the QuadTree [9]
matcher and the results without finetuning are presented
in Tab. 1. For ⊕FD ∈ R2d, we concatenate the depth fea-
ture extracted from the 2nd-final output layer of the depth
estimator with the image features obtained from QuadTree
for the matching module. For +FD ∈ Rd, the two fea-
tures are summed. For ⊕FC ∈ Rd+1, we concatenate
the one-dimensional curvature value from SCE and image
features to compute the matching confidence matrix. For
+sin(FC) ∈ Rd, the curvature feature is processed with
sinusoidal encoding and then summed with the image fea-
tures. Our method achieves better performance without any
fine-tuning.



Method
ScanNet [2] MegaDepth [5]

AUC@5 @10 @20 P(%) AUC@5 @10 @20 P(%)

⊕FD 6.7 15.9 28.3 75.5 47.3 64.1 76.6 98.6

+ FD 5.3 12.4 22.3 71.2 46.8 63.5 76.3 98.6

⊕FC 24.4 44.3 61.6 89.6 52.8 68.5 81.6 98.5

+ sin(FC) 24.0 43.7 61.0 89.5 52.7 69.1 81.5 98.5

Ours 25.2 45.5 62.5 89.4 54.0 70.3 82.1 97.9

Table 1. Additional Baselines. Additional baselines that directly
encode the depth features or curvature features to the QuadTree
matcher. The best results are bold.

5. Additional Quantitative Results
As mentioned in the main paper, default input sizes dif-

fer among the matching approaches and benchmarks. Tab. 2
shows the input image size for the outdoor datasets. Ad-
ditionally, we also report the AUC of the latest matcher
ASpanFormer [1] with CSE on MegaDepth [5] and Scan-
Net [2]. The longest dimension of image size in MegaDepth
are rescaled to 1152 in Tab. 3 by the default setting. Our
adds-on curvature similarity estimator still shows perfor-
mance improved on this SoTA matcher.

Input Size YFCC [10] MegaDepth [5]

SuperGlue [7]-based 1600 1200

LoFTR [8]-based 840 1200

Quadtree [9]-based 832 832

Table 2. Default image sizes of different matchers. The numbers
are the longest dimension of the rescaled image size.

Methods
ScanNet [2] MegaDepth [5]

AUC@5◦ @10 ◦ @20 ◦ AUC@5◦ @10 ◦ @20 ◦

ASpanF [8] 25.5 46.0 63.3 55.3 71.5 83.1

ASpanF + CSE 25.9 46.5 64.5 56.1 72.0 83.4

ASpanF + CSE (w/ FT) 25.8 46.5 64.6 56.4 72.0 83.2

Table 3. Matching results with ASpanFormer + CSE. We report
the matching results (AUC with different thresholds) on Aspan-
Former. The best performance is marked in bold.

6. Additional Qualitative Results
We show in Fig. 2 more qualitative matching results. The

number of final matches and pose errors are also presented
in the figures. In Fig. 3, we visualize the depth maps from
different conditions and depth predictors. As described in
the main paper, although the ground truth depth provides
the most accurate 3D information, missing parts in the depth
map may lower the final matching accuracy. Some strate-

RGB Depth Matching

QuadTree
#Matches: 996
#False Matches: 11
ΔR:0.02°, Δt:0.3°

QuadTree + CSE
#Matches: 1131
#False Matches: 25
ΔR:0.73°, Δt:9.6°

Figure 1. Failure case with wrong matches marked with red. Cor-
rect matches are not drawn.

gies, such as omitting the invalid depths, might help to im-
prove the performance. However, our experiments show
that adopting lightweight monocular depth predictors is suf-
ficient to enhance the matching results. In Fig. 4, we visu-
alize the curvature and depth map of image pairs for both
indoor and outdoor scenes on QuadTree [9] + CSE to better
explain our curvature similarity-based approach.

7. Failure Case

As we discussed in the Limitation section of the main
paper, the matching performance may be downgraded if the
depth is inaccurate or no clear surface is observed. We illus-
trate a specific failure case in Fig 1, where the images show
mostly plants without clear surfaces for curvature extrac-
tion. Adding the SCE in this scenario increases the number
of incorrect matches and results in poorer pose estimation.
It is crucial to note, however, that such scenarios are rela-
tively rare. Despite the isolated failure case, our proposed
approach still yields substantial improvements in terms of
accuracy across various matchers and datasets, as demon-
strated in Tables 1 and 2 of the main paper.
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our CSE plug-into LoFTR [8] and QuadTree [9]. Our method consistently obtains more matches and better accuracy independently of the
matcher it is combined with.
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depth; (c) Depth map from MiDAS + ViT; (d) Depth map from MiDAS + ResNet101; (e) Depth map from MiDAS (real-time).
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Figure 4. Curvature and Depth Maps. We visualize the curvature maps and predicted depth maps of image pairs on indoor/outdoor
scenes with QuadTree + CSE. The outdoor curvature maps are presented with a reversed colourmap compared to the indoor ones for better
visualization.
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