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1. Derivation of Jacobian

In this section, we present the detailed derivations for
the Equation. 9, Equation. 10 and Equation. 11 of the main
paper, which calculate the Jacobian of Homography Trans-
formation w.r.t. the pitch θ and the roll ϕ angle. The pitch
angle θ and the roll angle ϕ represent the rotation of the
road surface w.r.t. the plane constructed with the x-axis and
z-axis of camera coordinates, as shown in Fig. 1.
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Figure 1: Pitch and Roll of Road Surface Normal Vector
Components

Derivation of Equation. 9 of the Main Paper is the Ja-
cobian of Homography Transformation (Equation. 1 of the
Main Paper) w.r.t. road surface normal n.
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Derivation of Equation. 10 of the Main Paper is the Ja-
cobian of road surface normal w.r.t. the pitch angle θ.
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Derivation of Eq. 11 of the Main Paper is the Jacobian of
road surface normal w.r.t. the roll angle ϕ.
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2. Performance with Estimated Camera Ex-
trinsic

One limitation of our method is that it requires additional
camera extrinsic information. Although it is easy to ob-
tain in a real vehicle system, it may not be available for
some datasets. To explore our performance under extrinsic
unknown settings, we estimated the camera extrinsic using
COLMAP [9] and used the estimated extrinsic to evaluate
the proposed method. However, the ApolloScape dataset’s
larger camera elevation angle caused the key points ob-
tained by COLMAP to be further away from the vehicle,
resulting in noisy camera poses. Despite these less accurate
poses, our method still achieved plausible performances (
“w/ COLMAP Extrinsic” in Tab. 1).

3. Performance with Estimated Homography
We also use FindHomography function from OpenCV

package to directly estimate the homography transforma-



tion matrix. The estimations are less accurate than our Ho-
moGuide, leading to inferior lane segmentation results (“w/
OpenCV Homography” of Tab. 1).

Table 1: Comparison of Estimated Extrinsic and OpenCV
Homography on ApolloScape Dataset

18 mIoU↑ 36 mIoU↑
HomoFusion (ours) 59.3 35.9

w/ COLMAP Extrinsic 56.2 34.8
w/ OpenCV Homography 47.9 29.4

4. Challenging Scenarios
In this section, we evaluate the performance of our

method on challenging scenarios. As we utilize the LM al-
gorithm for road surface normal vector estimation, there is
a convex range of the algorithm that can result in failure
due to excessive re-projection errors. To further investigate
this scenario, we selected the top 100 inputs with the high-
est residuals after optimization. We compared our approach
with and without RSNE and found that incorporating the
RSNE led to improved performance (18 mIoU: 53.3 and
52.5, respectively), even in cases where the optimization has
a high possibility of being non-convex.

Additionally, we investigate whether our method suc-
cessfully estimates the road surface normal vector under up-
hill/downhill road scenarios. Fig. 2 demonstrates that the
normal is accurately estimated in uphill scenarios, resulting
in good alignment of road marks across multiple frames.

Well aligned

Figure 2: Correctly fused uphill frames using estimated nor-
mal.

5. Dataset Selection Criteria
Our method relies on borrowing information from adja-

cent frames, and therefore datasets that do not include con-
tinuous frames with a common field of view, such as CeyMo
[6], CULane [10], and VPGNet [8], are unsuitable for our
purposes. These datasets do not provide the necessary infor-
mation for our method to work effectively, as they lack the
continuity required for the information to be meaningfully
borrowed across frames. In addition, although vehicle pose
is free information that we can exploit, transitional lane

mark detection datasets, such as , LLAMAS [2], SDLane
[7] and VIL-100 [14], do not provide camera intrinsic and
extrinsic information, nor do they provide GPS/IMU data
that could be used to calculate camera global extrinsic in-
formation. These datasets are unsuitable for our method be-
cause they lack the necessary information for our approach
to work effectively. Furthermore, our method is a segmen-
tation task, and as such, datasets that do not provide seg-
mentation masks, such as OpenLane [3], Tusimple [10] are
also unsuitable. Without segmentation masks, it is impossi-
ble to accurately determine the boundaries of lane markings
in the image, making it difficult to apply our method ef-
fectively. While the Waymo Open Dataset [12] primarily
targets general panoptic segmentation, our lane marker seg-
mentation task focuses on only two categories—lane mark-
ers and road markers—limiting its utility. Our comparison
solely involves CFFM [11] on this dataset, highlighting our
approach’s enhanced efficacy in Table 2.

Table 2: Comparison on Waymo Open Dataset

CFFM [11] Ours
3 mIoU↑ 63.22 66.45

Given these limitations, our primary experimentation is
carried out on the ApolloScape dataset [5], as it offers the
necessary information for our approach. In addition, we
created an artificial dataset called ApolloScape Night from
the ApolloScape dataset using a cross-domain generation
network [1]. This dataset allows us to evaluate the effective-
ness of our method under challenging lighting conditions.
We conducted experiments on these datasets to demonstrate
the effectiveness of our method across various domains, in-
cluding daytime and nighttime driving scenarios. The re-
sults show that our approach achieves SOTA performance
on these datasets, confirming its effectiveness and suitabil-
ity for real-world lane detection applications.

6. Visualization on Real Night/Rain Scenes

We verify the effectiveness of our proposed method in
challenging real-world environments, e.g. dark and rainy
situations. Fig. 3 and Fig. 4 present the segmentation results
of our proposed method on real images taken at night and
in rainy conditions, respectively. Despite being trained only
on the artificial ApolloScape Night dataset, which simulates
road conditions at night, our proposed method successfully
segments various road lines and markings in real images.

7. Visualization on HomoGuide

This section complements Section. 4.6 of the Main Paper
on the “Impact of HomoFusion”. Fig. 7 compares our pro-
posed method with and without Homo Guide. It illustrates



Figure 3: Segmentation results (Right) of real night frames
(Left) using the model trained on the artificial ApolloScape
Night dataset. Our proposed method accurately segments
various road lines and markings, such as dot lines, solid
lines, crosswalks, and straight arrows.

Figure 4: Segmentation results (Right) of real rainy day
frames (Left) using the model trained on the artificial Apol-
loScape Night dataset. The proposed method accurately
segments various road lines and markings, including dot
lines, solid lines, double yellow lines, stop lines, and cross-
walks.

that incorporating HomoGuide enables our method to accu-
rately classify road lines and markings even under adverse
conditions such as occlusion, road reflection, and poor light
conditions.

8. Visualization of Water Hazard Detection
This section complements Section. 4.6 of the Main Paper

on the “Application to Another Task”, we provide a visual-
ization of the predicted segmentation and the input frames
transformed by Homography in Fig. 5 and Fig. 6, respec-
tively. These figures demonstrate that our proposed Homo-
Fusion can align ground surfaces well enough to improve
the performance of detection of flat objects on the ground.

Current frame Prediction Ground Truth

Figure 5: Current frame, prediction and ground truth masks
of water puddle segmentation. The 1st and 2nd rows are
from the Off-road dataset, and the 3nd and 4th rows are
from the On-road dataset.

Figure 6: Input frames transformed to the current frame by
homography using the estimated road surface normal vec-
tors and camera movement. The fused image of all eight
frames is shown in the bottom right corner.

9. Extra Qualitative Examples
Fig. 8 demonstrates that our proposed method can accu-

rately segment the road lines and markings of various cate-
gories.



It It-2 It-4 It-6 Prediction Ground Truth
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Figure 7: Impact of HomoGuide on segmentation results. Yellow boxes indicate the correspondence across frames with Ho-
moGuide and Red boxes indicate the correspondence without HomoGuide. HomoGuide facilitates the correct classification
of partially occluded road markings, as shown by the example of the partially occluded right turn arrow.

Figure 8: Examples of prediction on various road lines and markings. From top to bottom are input images, prediction of our
model, and ground truth. Best viewed in color.

Furthermore, we provide additional qualitative exam-
ples of our proposed method and state-of-the-art (SOTA)
algorithms, including (a) IntRA-KD [4], (b) SegFormer
[13], and (c) CFFM [11] and (d) MMA-Net [14], on Apol-
loScape [5] in Fig.9 and ApolloScape Night in Fig.10. Our
method demonstrates better true-positive predictions and
fewer false-positive predictions in both scenarios. Addition-
ally, our method accurately predicts more precise bound-
aries even in challenging glare and poor lighting conditions.

References

[1] Vinicius F Arruda, Thiago M Paixão, Rodrigo F Berriel, Al-
berto F De Souza, Claudine Badue, Nicu Sebe, and Thi-
ago Oliveira-Santos. Cross-domain car detection using un-
supervised image-to-image translation: From day to night.
In 2019 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2019. 2

[2] Karsten Behrendt and Ryan Soussan. Unsupervised labeled
lane markers using maps. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, 2019. 2

[3] Li Chen, Chonghao Sima, Yang Li, Zehan Zheng, Jiajie Xu,
Xiangwei Geng, Hongyang Li, Conghui He, Jianping Shi,



Im
ag

e
In

tR
A

-K
D

Se
gF

or
m

er
C

FF
M

O
ur

s
G

ro
un

d 
Tr

ut
h

M
M

A
-N

et

Figure 9: Extra qualitative comparison of our proposed method with SOTA methods on the ApolloScape [5] dataset. Yellow
boxes highlight the differences and enlarge the target area for better visibility. Red boxes indicate false-positive segmentation
predictions.
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Figure 10: Extra qualitative comparison of our proposed method with SOTA methods on the ApolloScape Night dataset.
Yellow boxes highlight the differences and enlarge the target area for better visibility. Red boxes indicate false-positive
segmentation predictions.
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