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1. Overview
In this supplementary material, we present additional re-

sults and analyses about the proposed method as follows.

• A more detailed and comprehensive illustration to the
performance comparison (Section 2).

• Ablation studies under high pruning ratios (Section 3).

• More visualization comparisons (Section 4).

• More discussions about the dynamics of the sparse
structure and trainability preserving (Section 5).

2. Compared Methods
ASSL. ASSL [9] prunes the filters of the convolutional lay-
ers across different residual blocks, which cannot be easily
extended to the novel structures, e.g., multi-layer percep-
tron, multi-head self-attention, etc. To improve the adapt-
ability of ASSL, we implement this method in a weight
pruning fashion by following their designing principles.

Firstly, ASSL selects the last convolutional layers of all
residual blocks as constrained layers, whose pruned filter
indexes should be kept the same across the whole network
for the residual connection concern. All the other convo-
lutional layers can be pruned without structural constrains,
which are termed as free layers. Similarly, we retain this
structural constraint by categorizing the learnable layers be-
fore the any residual connection as the constrained ones,
whose pruned wight indexes are consistent to one another,
while others are free layers without structural constrains.

To select the pruned filter indexes in the constrained lay-
ers, ASSL firstly employs the weight normalization [8] as
an indicator of the filter importance, which in our case, can
be directly inferred from the weight magnitudes. Thereby,
no additional weight normalization is needed in our setting.

To align the selected filter indexes across different con-
strained layers, ASSL collects the index vectors of each
constrained layers and encourages their consistency by
maximizing the inner-product of the index vectors, yielding
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a sparsity structure alignment (SSA) penalty. Alternatively,
we follow the same practice by regularizing the weight in-
dexes rather than filter indexes.

Except for the above adaptations, we strictly follow the
implementation of ASSL. To sum up, by retaining the key
design principles (i.e., filter alignment, SSA regularization,
etc.) of ASSL, we deliver an enhanced version of ASSL,
which is readily compatible with the off-the-shelf SR net-
work designs in the scenario of weight pruning.
SRP. Another representative work of SRP [10] is also ded-
icated to the pruned filter index alignment considering the
residual connection issue. This method selects the indexes
of pruned filters across different constrained layers in a ran-
dom manner prior to the training. Then the selected filters
are shrunk by an L2 regularization with a growing sched-
ule. Typically, the regularization encompasses L2-norm of
all unimportant filters in the network.

Here, we directly change the pruning units from the fil-
ters to the weights throughout the network and follow the
same regularization arrangement as SRP. Notably, both of
ASSL and SRP are raised upon a pre-trained SR network.
In our setting, the pruning is directly conducted upon the
network with random initialization.
N:M Sparsity. Besides compared methods, another emerg-
ing trend of weight pruning is to employ the N:M spar-
sity [2, 6]. This technology serves as an hardware-driven
standard/regulation proposed to take advantage of the real-
world accelerations upon novel computational platforms
(e.g., NVIDIA Ampere GPUs). The proposed method fun-
damentally different from them by delivering a highly-
adaptable solution for the diverse SR network architectures
in a algorithm-motivated perspective. N:M sparsity is or-
thogonal to our treatment (Section 2 in the manuscript).

However, to better evaluate the effectiveness of the pro-
posed method, We also compare ISS-P with the the most re-
cent method of SLS [7], following N:M sparsity. Note that,
this method handles the convolutional networks by cus-
tomizing the convolutional layers with structural constrains,
but not explores and evaluates other types of the neural
structures like the Transformer. Therefore, we perform the
comparison on the representative EDSR-L [5] backbone.



Backbones Methods Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR-L

scratch 29.60 0.8522 26.35 0.7312 25.92 0.7003 23.69 0.7303 27.28 0.8570
L1 norm [3] 29.61 0.8526 26.36 0.7318 25.93 0.7011 23.70 0.7313 27.35 0.8582

ASSL [9] 29.85 0.8568 26.54 0.7368 26.07 0.7064 24.09 0.7461 27.93 0.8690
SRP [10] 29.78 0.8558 26.47 0.7349 26.02 0.7036 23.89 0.7392 27.72 0.8656
SLS [7] 29.76 0.8558 26.41 0.7339 25.95 0.7029 23.76 0.7369 27.39 0.8576

ISS-P (ours) 30.23 0.8628 26.74 0.7428 26.21 0.7109 24.43 0.7596 28.51 0.8783

Table 1. A more comprehensive performance comparison of different methods upon the representative CNN backbone, EDSR-L [5] at the
scale of the ×4. The method [7] following the N:M sparsity standard is also incorporated. The pruning ratio is 0.95.
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Figure 1. Trainability comparison of ISS-P and IHT. The layer-
wise gradient L2-norm and variance in the pruning stage (1×105

iterations) and the first 1×105 iterations of fine-tuning stage are
plotted. We choose two representative layers, i.e., a convolution
(top) and a linear layer (bttom) from the SwinIR-Lightweight.

Specifically, we employ the SLS by pruning the convo-
lutional layers in the residual blocks and the upsampling
module. The N:M sparsity is chosen as 2:32 for a pruning
ratio of 0.94. We leverage the same training datasets and
data prepossessing operations as the manuscript (Section 4
in the manuscript). By comparison, the proposed method
outperforms compared methods including SLS. Consider-
ing the orthogonal property, one can easily integrate both
trends for a potential hardware acceleration on diverse net-
work designs with weight pruning strategy.

3. Ablation Study
The behaviour of the pruning methods can be different

under different pruning ratios. Therefore, we systematically
compare the performances of IHT, ISS-R, and ISS-P under
very high pruning ratios (i.e., 0.95 and 0.99). As shown by
Tables 2 and 3, ISS-P outperforms the ablated methods at
different scales, which is consistent with the results under
the ratio of 0.9 (Table 2 in the manuscript). Note that the
performance gaps between ISS-P and ablated methods grow
as the scale or pruning ratio increases. This is because ISS-
P not only better selects the sparse structure, but also retains
trainability of the sparse network (see Section 5).
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Figure 2. Dynamics of the Sparse structure induced by ISS-P and
IHT in the pruning stage. The proposed method, ISS-P, allows a
more active sparse pattern exploitation adapting to the optimiza-
tion. We choose four representative layers (i.e., 1st, 3rd, 36-th,
and 80-th) from the SwinIR-Lightweight backbone [4].

4. Visualization Comparison
In Figs. 3∼12, we provide more visualization of differ-

ent methods under the a very high pruning ratio of 0.99 and
scale of ×4, which is the most challenging scenario. The
proposed performs better by introducing less distortions, es-
pecially on high-frequency textured patterns, indicating the
strong modeling capacity of the selected sparse structure.

5. Model Discussion
Both the proposed ISS-P and IHT select the unimpor-

tant weights per layer in each iteration. Therefore, measur-
ing the number of weights that are categorized into differ-
ent importance groups between the consecutive iterations
helps infer the effect of the pruning methods. In Fig. 2,
we provide more visualizations of representative layers in
SwinIR-Lightweight. The weight significance flips in ISS-
P happens more frequent than that of IHT, which means
the proposed method potentially pursues more sparse pos-
sibilities in an active manner. We also provide more vi-
sualizations of the gradient statistics on different layers in
Fig. 1. The gradient L2-norm of ISS-P presents a preferred
convergence tendency over the IHT regardless of the layer
structures, which indicates the promising adaptability of the
proposed method across different neural architectures.



Methods Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

IHT ×2 35.17 0.9448 31.49 0.8978 30.57 0.8781 27.95 0.8740 32.91 0.9519
ISS-R ×2 35.37 0.9462 31.60 0.8983 30.66 0.8790 28.10 0.8730 33.31 0.9543
ISS-P ×2 35.86 0.9496 31.89 0.9015 30.87 0.8819 28.40 0.8777 34.09 0.9584
IHT ×3 32.96 0.9124 29.41 0.8247 28.44 0.7884 26.23 0.8030 30.61 0.9158

ISS-R ×3 32.92 0.9122 29.38 0.8239 28.43 0.7880 26.22 0.8027 30.57 0.9121
ISS-P ×3 33.28 0.9161 29.59 0.8282 28.58 0.7919 26.55 0.8123 31.28 0.9233
IHT ×4 30.61 0.8661 27.57 0.7567 26.93 0.7143 24.49 0.7258 27.49 0.8562

ISS-R ×4 30.69 0.8677 27.61 0.7576 26.96 0.7151 24.52 0.7273 27.61 0.8583
ISS-P ×4 30.97 0.8733 27.77 0.7619 27.05 0.7187 24.73 0.7360 28.00 0.8669

Table 2. Ablation study of different methods under the pruning ratio of 0.95 at different scales.

Methods Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

IHT ×2 35.17 0.9448 31.49 0.8978 30.57 0.8781 27.95 0.8740 32.91 0.9519
ISS-R ×2 35.37 0.9462 31.60 0.8983 30.66 0.8790 28.10 0.8730 33.31 0.9543
ISS-P ×2 35.86 0.9496 31.89 0.9015 30.87 0.8819 28.39 0.8777 34.09 0.9584
IHT ×3 31.35 0.8853 28.35 0.8035 27.75 0.7697 25.07 0.7630 28.03 0.8742

ISS-R ×3 30.94 0.8806 28.09 0.7990 27.64 0.7660 24.92 0.7578 27.56 0.8676
ISS-P ×3 31.87 0.8960 28.71 0.8102 27.98 0.7753 25.42 0.7754 28.78 0.8889
IHT ×4 29.13 0.8249 26.57 0.7261 26.34 0.6916 23.57 0.6801 25.55 0.7893

ISS-R ×4 29.09 0.8243 26.32 0.7260 26.32 0.6912 23.55 0.6788 25.49 0.7977
ISS-P ×4 29.39 0.8331 26.73 0.7313 26.44 0.6952 23.70 0.6873 25.81 0.8085

Table 3. Ablation study of different methods under the pruning ratio of 0.99 at different scales.

Urban100: img 012 (×4)

HR Bicubic L1-norm [3]

ASSL [9] SRP [10] ISS-P (ours)
Figure 3. Visualization comparison of different pruning methods on Urban100 [1] dataset. The pruning ratio is 0.99.

Urban100: img 020 (×4)

HR Bicubic L1-norm [3]

ASSL [9] SRP [10] ISS-P (ours)
Figure 4. Visualization comparison of different pruning methods on Urban100 [1] dataset. The pruning ratio is 0.99.



Urban100: img 072 (×4)

HR Bicubic L1-norm [3]
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Figure 5. Visualization comparison of different pruning methods on Urban100 [1] dataset. The pruning ratio is 0.99.

Urban100: img 055 (×4)
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Figure 6. Visualization comparison of different pruning methods on Urban100 [1] dataset. The pruning ratio is 0.99.

Urban100: img 061 (×4)
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Figure 7. Visualization comparison of different pruning methods on Urban100 [1] dataset. The pruning ratio is 0.99.

Urban100: img 012 (×4)

HR Bicubic L1-norm [3]
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Figure 8. Visualization comparison of different pruning methods on Urban100 [1] dataset. The pruning ratio is 0.99.



Urban100: img 032 (×4)
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Figure 9. Visualization comparison of different pruning methods on Urban100 [1] dataset. The pruning ratio is 0.99.

Urban100: img 044 (×4)

HR Bicubic L1-norm [3]
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Figure 10. Visualization comparison of different pruning methods on Urban100 [1] dataset. The pruning ratio is 0.99.

Urban100: img 010 (×4)
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Figure 11. Visualization comparison of different pruning methods on Urban100 [1] dataset. The pruning ratio is 0.99.

Urban100: img 023 (×4)

HR Bicubic L1-norm [3]

ASSL [9] SRP [10] ISS-P (ours)
Figure 12. Visualization comparison of different pruning methods on Urban100 [1] dataset. The pruning ratio is 0.99.
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