
Learning Support and Trivial Prototypes for Interpretable Image Classification

(Supplementary Material)

Chong Wang1 Yuyuan Liu1 Yuanhong Chen 1 Fengbei Liu1 Yu Tian2

Davis McCarthy3 Helen Frazer4 Gustavo Carneiro5

1 Australian Institute for Machine Learning, University of Adelaide
2 Harvard University 3 St Vincent’s Institute of Medical Research
4 St Vincent’s Hospital Melbourne 5 CVSSP, University of Surrey

1. Training Details

In our experiments, the proposed ST-ProtoPNet method

is trained with Adam [6] optimiser. The training process

starts from a warm-up stage for 5 epochs, where the pre-

trained CNN backbone is frozen and we only optimise the

parameters of add-on layers and prototype layers, using a

learning rate of 3 × 10
−3. Then, we jointly train the CNN

backbone, add-on layers, and prototype layers, where the

learning rate for the CNN backbone is chosen as 1 × 10
−4

(CUB [14]), 1 × 10
−4 (Cars [7]), 1 × 10

−5 (Dogs [5]).

In the third stage of fully-connected (FC) layer optimisa-

tion, we utilise a learning rate of 1× 10
−4 for 10 iterations.

In cropped CUB and cropped Cars datasets, we decrease

the learning rate by a factor of 0.2 per 2 epochs and use a

weight decay (5× 10
−4 for VGG and ResNet, 1× 10

−3 for

DenseNet) on the CNN backbone and add-on layers. In full

CUB, we decrease the learning rate by a factor of 0.2 per 20

epochs, a weight decay of 1 × 10
−4 is applied on all CNN

backbones and add-on layers. In full Dogs, we decrease

the learning rate by a factor of 0.2 per 10 epochs, a weight

decay of 5 × 10
−4 is applied on all CNN backbones and

add-on layers. For cropped CUB and cropped Cars, the two

1× 1 convolutional layers in the add-on layers are activated

by a tanh function, as a form of normalisation.

Note that, during training we alternate the optimisation

of each branch of our ST-ProtoPNet among mini-batches,

where we observe that our method only introduces marginal

extra computational burden and does not require much ad-

ditional training time to converge since the CNN backbone

is shared and optimised by both branches.

We implemented our ST-ProtoPNet method with Pytorch

[12] framework and performed experiments on a machine

with 4 NVIDIA GeForce RTX 3090 GPUs.

2. Additional Results on Cars and Dogs

In Tables 1 and 2, we demonstrate the classification re-

sults of deep-learning based methods that have different lev-

els of interpretability on Stanford Cars and Stanford Dogs

datasets, respectively.

As can be observed in Table 1, an ensemble of

three ST-ProtoPNets (based on VGG19, ResNet34, and

DenseNet121) reaches a high accuracy of 93.8% on Stan-

ford Cars, outperforming the three ensembled TesNet

method (93.1%) that uses the same CNN backbones. No-

tice that our three ensembled ST-ProtoPNet also exceeds

the three ensembled ProtoPNet, ProtoTree, and ProtoPool

methods by a margin of at least 2.4%. Additionally, the en-

semble of five ST-ProtoPNets, based on VGG19, ResNet34,

ResNet152, DenseNet121, and DenseNet161, achieves the

best classification accuracy of 94.1%.

In Table 2, we can see that a single ResNet152 based

ST-ProtoPNet model has a high accuracy of 87.2% on full

Stanford Dogs. An ensemble of three ST-ProtoPNets, based

on ResNet50, ResNet152, and DenseNet161, performs bet-

ter than other three ensembled methods utilising the same

CNN backbones, e.g., ProtoPNet and Deformable ProtoP-

Net. The ensemble of five ST-ProtoPNets, using VGG19,

ResNet50, ResNet152, DenseNet121, and DenseNet161,

obtains the state-of-the-art classification accuracy of 88.7%,

surpassing other competing methods that are also based

on an ensemble of five models, e.g., ProtoPNet and De-

formable ProtoPNet.

3. Ablation on Coefficient λ3

The coefficient λ3 in our method controls the strength of

the proposed closeness loss ℓcls and discrimination loss ℓdsc
for the learning of support and trivial prototypes, respec-

tively. We perform an ablation experiment to study the sen-

sitivity of our ST-ProtoPNet method to the hyperparameter

λ3. Table 3 shows the effect of λ3 on the classification ac-

curacy of our ST-ProtoPNet. As evident, if λ3 is too small,

other loss terms (e.g., cross-entropy, clustering, and sepa-

ration) will dominate the optimisation process, which leads

to performance degradation. However, if λ3 is too large,

Interpretability level Method Accuracy

None B-CNN [9] 91.3

Object-level attention CSG [8] 91.6

Part-level attention

MA-CNN [16] 92.8

RA-CNN [3] 92.5

TASN [17] 93.8

Part-level attention + Prototypes

Region [4] 90.9

ProtoPNet* [1] 91.4

ProtoTree* [11] 90.5

TesNet* [15] 93.1

ProtoPool* [13] 91.1

ST-ProtoPNet* (ours) 93.8

ProtoTree** [11] 91.5

ProtoPool** [13] 91.6

ST-ProtoPNet** (ours) 94.1

Table 1. Classification accuracy and interpretability level of differ-

ent methods on Stanford Cars. *: Ensembled of three models. **:

Ensembled of five models.

Interpretability level Method Accuracy

Part-level attention
FCAN [10] 84.2

RA-CNN [3] 87.3

Part-level attention + Prototypes

ProtoPNet [1] 79.7

Deformable ProtoPNet [2] 86.5

ST-ProtoPNet (ours) 87.2

ProtoPNet* [1] 83.6

Deformable ProtoPNet* [2] 87.1

ST-ProtoPNet* (ours) 88.6

ProtoPNet** [1] 84.1

Deformable ProtoPNet** [2] 87.3

ST-ProtoPNet** (ours) 88.7

Table 2. Classification accuracy and interpretability level of differ-

ent methods on Stanford Dogs. *: Ensembled of three models. **:

Ensembled of five models.

λ3 0 0.01 0.1 0.5 1.0 2.0 5.0 10.0

Accuracy 81.6 81.8 82.7 83.4 83.5 83.3 83.0 81.8

Table 3. Ablation to study the effect of hyperparameter λ3 on the

accuracy of our ResNet34-based ST-ProtoPNet on cropped CUB.

other losses (particularly the cross-entropy loss) will be dis-

tracted, resulting in lower discrimination ability. Therefore,

we choose λ3 = 1.0 in all our experiments.

4. Ablation on Independent Add-on Layers

In our ST-ProtoPNet method, the support and trivial Pro-

toPNets are branched after the CNN backbone and they

have independent add-on layers. One may also consider

using shared add-on layers, where both the support and

trivial prototypes will employ the same feature maps. We

thus design an ablation study on full CUB to compare the

classification results between using independent and shared

add-on layers. Table 4 gives the experimental results with

VGG19, ResNet50, and Dense121 as CNN backbones. We

can observe that using independent add-on layers exhibits

higher classification accuracy across different CNN back-

bones. One possible explanation is the support and trivial

Method VGG19 ResNet50 Dense121

ST-ProtoPNet (shared add-on layers) 79.2 87.5 81.2

ST-ProtoPNet (independent add-on layers) 80.2 88.0 81.8

Table 4. Ablation study on using independent or shared add-on

layers for our ST-ProtoPNet method.

Method
Accuracy

before pruning

Accuracy

after pruning

Accuracy

after pruning and

optimising last layer

Number

of pruned

prototype

ProtoPNet [1] 78.2 74.4 78.0 666

Trivial ProtoPNet 78.6 74.4 78.3 701

Support ProtoPNet 79.7 74.7 79.4 409

Table 5. Effect of prototype pruning on different ProtoPNet meth-

ods trained on cropped CUB.

(a) A support prototype of

the class Laysan Albatross

(b) The closest support prototype

not of the class Laysan Albatross

(c) The closest training image patch

not of the class Laysan Albatross

Figure 1. (a) A support prototype from the class Laysan Albatross.

(b) Closest support prototype not of the class Laysan Albatross.

(c) Closest training image patch not of the class Laysan Albatross.

prototypes have distinctive characteristics that require dif-

ferent feature representations for classification.

5. Effect of Prototype Pruning

Prototype pruning [1] can automatically remove non-

discriminative background prototypes. Less pruned proto-

types indicate more prototypes focus on the discriminative

object regions, we thus favour a smaller number of pruned

prototypes. We conduct experiments with pruning for the

support and trivial prototypes. Following [1], during prun-

ing we employ 6 nearest latent patches for each prototype

and set the pruning threshold τ = 3. In order to achieve

fair comparison with the vanilla ProtoPNet [1], we do not

use the orthonormality loss ℓort, and add only our proposed

closeness loss ℓcls or discrimination loss on ℓdsc to the

vanilla ProtoPNet [1] to establish the Support ProtoPNet or

Trivial ProtoPNet, respectively. Table 5 presents the exper-

imental results on cropped CUB by using VGG19 as CNN

backbone. As can be seen, the number of pruned support

prototypes are substantially reduced, compared with that of

trivial prototypes in the vanilla ProtoPNet [1] and Trivial

ProtoPNet, verifying that our proposed support prototypes

are less likely to be localised on background regions.

6. A Visual Study for Support Prototypes

We provide a visual study to qualitatively validate the

resemblance of support prototypes of different classes. To

be specific, for a support prototype of class c, we show its

closest support prototype as well as closest training image

patch that are not of class c. Results in Fig. 1 illustrate for

GradCAM ProtoPNet
Deformable
ProtoPNet

TesNet
ST-ProtoPNet

(ours)
Original Image

American Three

Toed Woodpecker

Bewick Wren

European

Goldfinch

Yellow Billed

Cuckoo

Cape May

Warbler

Figure 2. Activation map for images from the full CUB test set.

The bird in the original images is indicated by a green bound-

ary outline extracted from the annotated segmentation mask. For

prototype-based methods, the activation map is obtained by aver-

aging all activation maps of the class.

a support prototype from the class Laysan Albatross, both

its closest support prototype and training image patch have

similar appearance (bird’s head) and come from the class

Sooty Albatross, indicating that a support prototype of a

class does closely resemble that of a similar but wrong class

and help tell apart difficult classes.

7. Visualisation of Object Localisation on CUB

In Fig. 2, we present some examples of the activation

map generated by our ST-ProtoPNet and other competing

methods for images from the full CUB test set. It can be

observed that, compared with the vanilla ProtoPNet [1], our

method mainly relies on the object (i.e., bird) region in-

stead of the background pixels. In addition, we also no-

tice that our method has more activation coverage on the

target object than TesNet [15] and Deformable ProtoPNet

[2], which demonstrates that our proposed method utilises

both the support and trivial prototypes to effectively capture

much richer representations of the target object.

8. More Examples of Prototype Visualisation

In Fig. 3 and 4, we provide more visual examples of

typical prototypes learned by our top-performing models

on Stanford Cars and Stanford Dogs datasets. Specifically,

we display prototypes of Dense161-based and ResNet152-

based ST-ProtoPNet for Stanford Cars and Stanford Dogs,

respectively. Following previous studies [1, 2], all these

prototypes are visualised by projecting onto their nearest

training patch in the latent feature space.

8.1. Stanford Cars

In Fig. 3, we demonstrate the visual prototypes of four

classes (Acura RL Sedan 2012, Acura TL Sedan 2012,

Acura TL Type-S 2008, and Acura TLS Sedan 2012) learn

from cropped Stanford Cars dataset. We can note from

Fig. 3(a) that the support prototypes mainly capture visu-

ally similar features of different classes, such as the light

and front bumper. By contrast, the trivial prototypes in

Fig. 3(b) are inclined to focus on not only lights but also

other car parts, such as wheel, door, and window. For the

cropped Cars dataset, the target objects of cars usually oc-

cupy a large area in the whole image, so we rarely observe

background regions in trivial prototypes.

8.2. Stanford Dogs

In Fig. 4, we demonstrate some typical prototypes of

five classes (Rhodesian Ridgeback, Toy Terrier, Komondor,

Rottweiter, and Dhole) from full Stanford Dogs dataset. It

can be observed from Fig. 4(a) that the support prototypes

often contain similar visual patterns of different classes,

e.g., dog’s eye, mouth, and head. By contrast, trivial pro-

totypes in Fig. 4(b) are usually from dog’s neck, leg, and

belly (lower surface) regions. We also notice that two triv-

ial prototypes capture background regions (rightmost ones

of the Rottweiter and Dhole classes).

9. More Examples of Interpretable Reasoning

We provide more examples of the interpretable reason-

ing process of our ST-ProtoPNet method on Stanford Cars

(Dense161-based) and Stanford Dogs (ResNet152-based)

datasets, as illustrated in Fig. 5 and Fig. 6. For each ex-

ample, we display two support and trivial prototypes of the

predicted class as well as the corresponding source train-

ing images where these prototypes come. For a testing im-

age, the activation maps and highest similarity scores with

these prototypes are also provided. For simplicity, we only

demonstrate the prototypes, activation maps, and similarity

scores contributing to the predicted class for each example.

9.1. Stanford Cars

Fig. 5 displays the interpretable reasoning of our ST-

ProtoPNet method in classifying a testing car (Acura TL

Type-S 2008) image. In each ProtoPNet branch, our method

compares the testing image with training prototypes and

computes the corresponding similarity scores, which is then

weighted and summed to produce the classification logits.

The final classification logits is the sum of logits from both

branches. In particular, the support prototypes are mostly

active on the fog light and headlight of the car. Mean-

while, the trivial prototypes have high activations on the

car’s window and wheel. In this case, the support ProtoP-

Net branch generates a comparably larger similarity score

(a) Support prototypes (b) Trivial prototypes

Acura RL Sedan 2012

Acura TL Sedan 2012

Acura TL Type-S 2008

Acura TLS Sedan 2012

Figure 3. Visual comparison between the support (a) and trivial (b) prototypes from cropped Stanford Cars, where each row exhibits

prototypes of the same class. In each pair, the first column shows the original image with a prototype indicated in a yellow bounding box,

the second column demonstrates the prototype’s corresponding activation map.

(a) Support prototypes (b) Trivial prototypes

Rhodesian Ridgeback

Toy Terrier

Komondor

Rottweiter

Dhole

Figure 4. Visual comparison between the support (a) and trivial (b) prototypes from full Stanford Dogs, where each row exhibits prototypes

of the same class. In each pair, the first column shows the original image with a prototype indicated in a yellow bounding box, the second

column demonstrates the prototype’s corresponding activation map.

Testing

image
Prototype

Training image

with prototype

Activation

map

Similarity

score

Connection

weight

Individual

logits

Combined

logits

4.078 1.127× 4.596=

3.540 1.104× 3.908=

3.817 1.086× 4.145=

3.686 1.025× 3.778=

Support ProtoPNet

Trivial ProtoPNet

...

...

...

...

34.538

...

...

...

...

...

...

...

...

...

...

17.840

16.698

Figure 5. An example of the interpretable reasoning of our ST-

ProtoPNet for classifying a testing car (Acura TL Type-S 2008)

image.

(17.840) in comparison with the trivial ProtoPNet branch

(16.698), meaning that the testing car image is more similar

to the support prototypes than the trivial ones. We can see

that the support and trivial prototypes make complementary

predictions contributing to the final classification decision.

9.2. Stanford Dogs

Fig. 6 reveals the interpretable reasoning of our ST-

ProtoPNet method in classifying a testing dog (Rhodesian

Ridgeback) image. To be specific, when classifying the

Rhodesian Ridgeback dog, its head is usually activated by

the support prototypes while its neck and belly are often

activated by the trivial prototypes. We should notice that

for the full Stanford Dogs dataset, we utilise cosine simi-

larity [2], instead of projection metric [15] used in cropped

Stanford Cars, to measure the similarity between the testing

image’s feature map and prototypes, so the similarity scores

are within the range of [0, 1]. In this example, the support

and trivial ProtoPNet branches obtain an accumulated sim-

ilarity score of 35.902 and 35.583, respectively. By using

both support and trivial prototypes, our ST-ProtoPNet can

capture richer representations of the target object (dog in

this example) from different perspectives to achieve com-

plementary interpretations.

References

[1] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia

Rudin, and Jonathan K Su. This looks like that: deep learn-

ing for interpretable image recognition. Advances in Neural

Information Processing Systems, 32, 2019. 2, 3

[2] Jon Donnelly, Alina Jade Barnett, and Chaofan Chen. De-

formable protopnet: An interpretable image classifier using

deformable prototypes. In Proceedings of the IEEE/CVF

Testing

image
Prototype

Training image

with prototype

Activation

map

Similarity

score

Connection

weight

Individual

logits

Combined

logits

0.881 1.093× 0.963=

0.864 1.032× 0.892=

0.866 1.105× 0.957=

0.849 1.033× 0.877=

Support ProtoPNet

Trivial ProtoPNet

...

...

...

...

71.485

...

...

...

...

...

...

...

...

...

...

35.902

35.583

Figure 6. An example of the interpretable reasoning of our ST-

ProtoPNet for classifying a testing dog (Rhodesian Ridgeback)

image.

Conference on Computer Vision and Pattern Recognition,

pages 10265–10275, 2022. 2, 3, 4

[3] Jianlong Fu, Heliang Zheng, and Tao Mei. Look closer to

see better: Recurrent attention convolutional neural network

for fine-grained image recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4438–4446, 2017. 2

[4] Zixuan Huang and Yin Li. Interpretable and accurate fine-

grained recognition via region grouping. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 8662–8672, 2020. 2

[5] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng

Yao, and Fei-Fei Li. Novel dataset for fine-grained image

categorization: Stanford dogs. In Proc. CVPR Workshop on

Fine-grained Visual Categorization (FGVC), volume 2. Cite-

seer, 2011. 1

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 1

[7] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

Proceedings of the IEEE International Conference on Com-

puter Vision Workshops, pages 554–561, 2013. 1

[8] Haoyu Liang, Zhihao Ouyang, Yuyuan Zeng, Hang Su, Zi-

hao He, Shu-Tao Xia, Jun Zhu, and Bo Zhang. Training in-

terpretable convolutional neural networks by differentiating

class-specific filters. In European Conference on Computer

Vision, pages 622–638. Springer, 2020. 2

[9] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji.

Bilinear cnn models for fine-grained visual recognition. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 1449–1457, 2015. 2

[10] Xiao Liu, Tian Xia, Jiang Wang, Yi Yang, Feng Zhou, and

Yuanqing Lin. Fully convolutional attention networks for

fine-grained recognition. arXiv preprint arXiv:1603.06765,

2016. 2

[11] Meike Nauta, Ron van Bree, and Christin Seifert. Neural

prototype trees for interpretable fine-grained image recogni-

tion. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 14933–14943,

2021. 2

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-

perative style, high-performance deep learning library. Ad-

vances in Neural Information Processing Systems, 32, 2019.

1

[13] Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Ko-

ryna Lewandowska, Jacek Tabor, and Bartosz Zieliński. In-

terpretable image classification with differentiable proto-

types assignment. In European Conference on Computer Vi-

sion, pages 351–368. Springer, 2022. 2

[14] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The caltech-ucsd birds-200-2011

dataset. 2011. 1

[15] Jiaqi Wang, Huafeng Liu, Xinyue Wang, and Liping Jing.

Interpretable image recognition by constructing transparent

embedding space. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 895–904,

2021. 2, 3, 4

[16] Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learn-

ing multi-attention convolutional neural network for fine-

grained image recognition. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 5209–5217,

2017. 2

[17] Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, and Jiebo Luo.

Looking for the devil in the details: Learning trilinear atten-

tion sampling network for fine-grained image recognition. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 5012–5021, 2019. 2

