
A. Method Details

In this section, we present more details of our
method.

A.1. Algorithm
Algorithm 1 provides the psuedo-code of training

our method. Algorithm 2 provides the psuedo-code of
deploying our method on real robot during test time.

A.2. Data Collection Details
Our Robot-Free Data Collection is built around the

19-inch RMS Handi Grip Reacher and Intel RealSense
D435 camera to collect visual data. We attach a 3D
printed mount above the stick to hold the camera in
place. At the base of the reacher-grabber, there is a
lever to control the opening and closing of the gripper
fingers. To collect demonstrations, a human user uses
the setup shown in Fig 4 (a) which allows the user to
easily push, grab and interact with everyday objects in
an intuitive manner. We also use an Intel RealSense
T265 camera to track the end-effector position via vi-
sual inertial odometry. The demonstrations are repre-
sented as a sequence of images It with corresponding
end-effector positions Pt.

Once we have the end-effector pose Pt for every im-
age It,we extract the relative transformation Tt,t+1 =
P−1
t × Pt+1 between consecutive frames and use them

as the action for training.

A.3. Training Details
Our method is composed of two modules: 1) a pre-

trained representation network, R, to encode obser-
vations, it = R(It), and enables control via distance
learning. 2) a dynamics function F , to predict the fu-
ture state for a possible action at.

Here we encode the image It via a ResNet18 [17] and
use a 1-layer projection head to get the visual embed-
ding it ∈ R128. For the dynamics function F (it, at), we
use a 3-layer MLP (128 + action dimension to 128 to
128) with ReLU activation. Both modules are trained
jointly with L = λdLd+λFLF where λd = λF = 1. We
use the Adam optimizer [19] for training the network
with a batch size of 64 and a learning rate of 10−3.
We train the network for 500 epochs and report the
performance.

For each current observation, we randomly sample
4096 actions from training set as negative logits and
use the ground truth action as possitive logit. For
rotation-free tasks, like pushing and stacking, we use
only the translation of Tt,t+1 as the action, such that
at ∈ R3. For rotation-heavy tasks, like knob turning,
we use both translation and rotation of Tt,t+1 as the ac-

Algorithm 1 LMLS (Train of Passive Videos)

###################Initialize###################
R: observation encoder; F: dynamics function
G: gripper action classifier
#####################Input######################
I_t: current images; I_t+1: current images;
I_g: goal images; a_t: current actions;
a_r: sampled random actions; g_t: gripper action
################################################
# Learning Task-Centric Distances
for x in loader: # load a minibatch x with N samples

i_t = R(x.I_t) # encode current images
i_t+1 = R(x.I_t+1) # encode next images
i_g = R(x.I_g) # encode goal images
i_p = F(i_t, x.a_t) # predict next state
i_h = F(i_t, x.a_r) # hallucinated next state
l_pos = cosine_similarity(i_p, i_g)#positive: N*1
l_neg = cosine_similarity(i_h, i_g)#negative: N*M
logits = cat([l_pos, l_neg], dim=1)#logits: Nx(1+K)
labels = zeros(N) # contrastive loss
loss_dis = CrossEntropyLoss(logits, labels)
loss_dyn = MSELoss(i_p, i_t+1) # dynamics loss
loss = loss_dis + loss_dyn
loss.backward()
update(R.params, F.params) # Adam update

# Learning Binary Gripper Classifier
for x in loader: # load a minibatch x with N samples

i_t = R(x.I_t) # encode current images
g = G(i_t) # predict gripper action
loss = BCELoss(g, x.g_t)
loss.backward() # Adam update
update(R.params, F.params)

Algorithm 2 LMLS (Test on Robots)

###################Initialize###################
T_0: robot home position; I_0: initial observation
#####################Input######################
R: observation encoder; F: dynamics function
G: gripper action classifier; I_g: goal;
a_r: sampled random actions
################################################
i_g = R(I_g)
While not reach_goal or t < max_step:

i_h = F(R(I_t), a_r) # hallucinated next state
distance = - cosine_similarity(i_h, i_g)
# choose action leads to smallest distance-to-goal
best_action_index = argmin(distance)
a_t = a_r[best_action_index]
g = G(I_t) # predict gripper action
# Send command to robot and get new observation
T_t+1, I_t+1 = Robot(T_t, a_t, g)

tion, such that at ∈ R12 (first three rows in the SE(3)
homogeneous transformation).

To improve the performance of our networks with
limited data, we use the following data augmentations
in training: (a) color jittering: randomly adds up to
±20% random noise to the brightness, contrast and
saturation of each observation. (b) gray scale: we ran-
domly convert image to grayscale with a probability
of 0.05. (c) crop: images are randomly cropped to
224× 224 from an original image of size 240× 240.

B. Experiment Details

B.1. Hardware Setup and Control Stack
Our real-world experiments make use of a Franka

Panda robot arm with all state logged at 50 Hz. Ob-



Figure 7: Transform actions in camera frame to robot
frame.

servations are recorded from an Intel RealSense D435
camera, using RGB-only images at 1280 × 720 resolu-
tion, logged at 30 Hz. On the robot’s end, we use the
same 19-inch RMS Handi Grip Reacher and attach it
using metal studs to the robot end effector through a
3D-printed mount. To control the fingers of the tool,
we remove the lever at the base of the grip reacher
and replace it with a dynamixel XM430-W350-R servo
motor.

The learned visual-feedback policy operates at 5 Hz.
On a GTX 1080 Ti GPU. The learned action space is
a 6 Dof homogeneous transformation, from the previ-
ous end-effector pose to the new one. We then calculate
the new joint position using inverse kinematics through
Mujoco [45]. The joint positions are linearly interpo-
lated from their 5 Hz rate to be 100 Hz setpoints to
our joint level controller. The joint positions are then
sent to Facebook Polymetis [26] to control the Franka
robot.

It worth noticing the learned action space is in
camera frame instead of robot frame. Thus, we
need to transform the predicted actions Tc0c1 to robot
frame through a fixed homogeneous transformation Tcr

(Fig 7).
Using chain rule, we can easily calculate the motion

in robot frame (Tr0r1) as:

Tr0r1 = Trc × Tc0c1 × Tcr (1)

= T−1
cr × Tc0c1 × Tcr (2)

B.2. Baselines
We compare our method against three SOTA base-

lines: behavior cloning, implicit behavior cloning, im-
plicit Q-learning. To make the comparisons fair, we

parameterize all neural networks with the same R3M
representation backbone used by our method, and tune
hyper-parameters for best possible performance.

• Behavior Cloning [35, 48] (BC): BC learns a
policy (via regression) that directly predicts ac-
tions from image observations: minπ ||π(It, Ig) −
at||2. This provides a strong comparison point for
a whole class of LfD methods that focus on learn-
ing motor policies directly (i.e. learn policies that
predict actions). Here we encode the image It via
a ResNet18 [17] and use a 4-layer multi-layer per-
ceptron [34] to regress the actions (512-256-128-
action dimension). The predicted actions are su-
pervised with ground-truth actions via MSELoss.
We use the Adam optimizer [19] for training the
network with a batch size of 64 and a learning rate
of 10−3. We train the network for 200 epochs and
report the performance.

• Implicit Behavior Cloning [13] (IBC): IBC
learns an energy based model that can predict
actions during test time via optimization: at =
argminaE(a, It). This method is conceptually very
similar to behavior cloning, but has the potential
to better handle multi-modal action distributions
and discontinuous actions. Similarly, we encode
the image It via a ResNet18 [17] and use a 1-
layer projection head to get the visual embedding
it ∈ R128. We also encode the actions with a 3-
layer multi-layer perceptron (action dimension to
32 to 64 to 128). For each current observation,
we randomly sample 4096 actions âj from train-
ing set as negative logits and use the ground truth
action at as possitive logit. Both visual encoder
and action encoder are trained with NCE loss:

L =
exp(cos(it, at))

exp(cos(it, at)) + Σjexp(cos(it, âj))

We use the Adam optimizer [19] for training the
network with a batch size of 64 and a learning rate
of 10−3. We train the network for 500 epochs and
report the performance.

• Implicit Q-Learning [20] (IQL): IQL is an
offline-RL baseline that learns a Q function
Q(s, a) = Q((It, Ig), at), alongside a policy that
maximizes it π(It, Ig) = argmaxaQ(s, a). Note
that IQL’s training process require us to annotate
our offline trajectories D with a reward signal rt
for each time-step. Here we label the trajectories
with sparse reward: +1 for end-effector reaching
the target object, +2 for reaching the goal state,



and +0 for all other states. We use d3rlpy [44] and
trained the model for 500k steps.


