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1. Implementation Details

1.1. Dataset Description and Preprocessing

To validate the superiority of the proposed Masked Spik-
ing Transformer (MST) on both static and neuromorphic
datasets, we evaluated our model on the following bench-
marks:

CIFAR-10 The CIFAR-10 [5] dataset encompasses
60,000 (50,000 training samples and 10,000 testing sam-
ples) 32×32 color images, with 10 distinct classes.

CIFAR-100 The CIFAR-100 dataset [4] comprises
60,000 (50,000 training samples and 10,000 testing sam-
ples) 32×32 color images, distributed across 100 object
classes.

ImageNet-1k The ImageNet-1k dataset [3] consists of
1,281,167 training images, 50,000 validation images, and
100,000 test images, categorized into 1000 object classes.

The above datasets are static image datasets. In the pre-
processing stage, the images are resized to a resolution of
224×224 to match the input dimensions of the model. Data
augmentation techniques, such as random cropping and hor-
izontal flipping, are applied to increase the diversity of the
training data and improve the generalization ability of the
model. In addition, data normalization is applied to the in-
put images to ensure they have zero mean and unit variance.
These are common preprocessing steps in machine learning
that improve the performance of the model by enhancing
the quality of the inputs.

*Equal contribution.
†Corresponding author

CIFAR10-DVS The CIFAR10-DVS dataset [6] encom-
passes 10,000 event-based images, with a 128×128 reso-
lution and 10 classes, derived from the CIFAR-10 dataset
via an event-based sensor. This dataset is partitioned into
9,000 training samples and 1,000 test samples.

N-Caltech101 The N-Caltech101 dataset [11] incorpo-
rates 8,831 event-based images, with a 180×240 resolution
and 101 classes, generated from the original Caltech101
dataset through an event-based sensor.

N-Cars The N-Cars dataset [12] contains 24,029 event-
based images, with a 100×120 resolution and two classes
(car and background). The training set comprises 7,940
cars and 7,482 background samples, whereas the test set
includes 4,396 cars and 4,211 background samples.

Action Recognition The Action Recognition dataset [9]
encompasses 10 classes at a 346×260 resolution, including
arm-crossing, getting up, jumping, kicking, picking up, sit-
ting down, throwing, turning around, walking, and waving.
The dataset comprises 30 recordings per class, averaging 5
seconds of actual action. Because of the dataset’s limited
size, the raw data is converted into 4,670 frame images uti-
lizing the Surface of Active Events (SAE) [10] encoding
technique.

ASL-DVS The ASL-DVS [1] dataset constitutes a
comprehensive 24-class collection of handshape recordings
captured under authentic conditions. Its 24 classes corre-
spond to 24 letters (A-Y, excluding J) from American Sign
Language (ASL). Five subjects were instructed to exhibit
various static handshapes about the camera, introducing
natural variability into the dataset. Each letter contains
4,200 samples, culminating in a total of 100,800 samples,



with each sample enduring approximately 100 millisec-
onds.

The above datasets are specifically designed for neuromor-
phic computing. In the pre-processing stage, the images are
resized to a resolution of 224×224 in order to match the
input dimensions of the model. Neuromorphic datasets are
generally small in size and prone to overfitting. Herein, we
applied the data augmentation techniques that are specifi-
cally designed for neuromorphic datasets[7] before loading
the data. This helps to improve the generalization ability of
the model by preventing it from overfitting to the specific
characteristics of the training data.

1.2. Training Hyperparameters

The quantization clip-floor-shift (QCFS) [2] method is
used during the ANN-to-SNN conversion. The QCFS func-
tion can be expressed by:
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where L denotes the ANN quantization step and λl is the
trainable threshold of the outputs in ANN layer l, which is
mapped to the threshold θl in SNN layer l. In our work, the
quantization steps L is set to 16 and the initial threshold θ
is set to 3.

During the pre-training of the ANN, the AdamW op-
timizer was utilized and the model was trained for 300
epochs. The CosineLRScheduler [8] algorithm was em-
ployed to schedule the learning rate according to a cosine
function, decreasing it as training progressed. A weight de-
cay of 0.05 was also applied as a regularization technique.
The CosineLRScheduler algorithm modulates the learning
rate according to a cosine function, decreasing it as train-
ing progresses. These training parameters were chosen in
order to optimize the performance of the ANN during the
pre-training phase.

In the following experiments, the weights of the model
without masking were fine-tuned for an additional 100
epochs with various masking ratios, using the same training
parameters as in the pre-training phase. To reduce the in-
fluence of randomness on the accuracy of the model during
inference, we conducted 10 inferences with different seeds
(0, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000)
and calculated the mean and variance of the accuracy across
these 10 runs. This was done for all cases in order to pro-
vide a more robust comparison and analysis. Averaging the
results of multiple inferences helps to mitigate the influence
of random fluctuations on the accuracy of the model and al-
lows for a more reliable assessment of its performance. The
details of hyperparameters can be found in Tab. 1.

Dataset Optimizer Epoch lr Batch Size
CIFAR-10

Adamw 300 1e-4

64
CIFAR-100 64
ImageNet 64

CIFAR10-DVS 16
N-Caltech101 16

N-Cars 64
Action Recognition 16

ASL-DVS 16

Table 1: The details of training hyperparameters of different
datasets.

Figure 1: Test loss and test accuracy on the ImageNet
dataset.

1.3. Training Curves

In Fig. 1, We present the test loss and accuracy of the
proposed MST in the ANN pre-training process on the Ima-
genet dataset. In order to achieve optimal performance, the
ANN is trained for 300 epochs. As shown in Fig. 1, the
curve of test loss demonstrates a clear convergence, which
indicates that the ANN has reached a steady state.

2. Effect of Masking Ratios and Time Steps on
Accuracy

In Fig. 2, we analyze the effect of different time steps
on the accuracy of the Masked Spiking Transformer (MST)
model, which employs the Random Spike Masking (RSM)
method with different masking ratios, on the CIFAR-10,
CIFAR-100, and ImageNet datasets. To mitigate the effect
of random seed on the accuracy, each masking ratio sce-
nario was executed 10 times. The dark line in the figures
represents the mean accuracy of these 10 trials, while the
lighter-shaded area signifies the accuracy variance.

To clearly illustrate the difference in accuracy among
different masking ratios, the time step in the figures com-
mences at 64 for the CIFAR-10 and CIFAR-100 datasets
and at 128 for the ImageNet dataset. As the time step in-
creases, the accuracy initially shows a rapid increase fol-



Figure 2: Comparision of the accuracy with increasing time steps at different masking ratios.

lowed by a period of plateauing.
In terms of the impact of masking ratios on accuracy, the

general trend shows that accuracy decreases as the mask-
ing ratio increases. However, this effect also depends on the
complexity of the task. For simpler tasks such as CIFAR-10,
the influence of the masking ratio on accuracy is relatively
small, whereas for more complex tasks like CIFAR-100 and
ImageNet, a substantial accuracy gap occurs between differ-
ent masking ratios. This observation suggests the presence
of more redundant spikes on the CIFAR-10 dataset, which
can be pruned without compromising performance.

3. The Impact of the RSM Method on Firing
Rate in the Self-Attention Module

We investigate the firing rates of Query, Key, Attention,
and Value components within the self-attention module, ex-
amining their difference across distinct blocks. Our RSM
method is applied to the Query, Key, and Attention com-
ponents, incorporating various masking ratios. As demon-
strated in Fig. 4, the utilization of our RSM method ef-
fectively decreases the firing rate of the respective module.
Consequently, this reduction leads to a diminished number
of spikes within the network, ultimately contributing to a
decrease in energy consumption. By incorporating the RSM
method, we demonstrate the potential to optimize energy ef-
ficiency in the self-attention module without compromising
network performance.

4. The Impact of the RSM Method on the Num-
ber of Spikes in the Whole Model

Fig. 3 depicts the effect of different masking ratios on the
total number of spikes for each block in the overall model,
evaluated using the CIFAR-100 dataset. The results show
that there is a significant correlation between the increase

Figure 3: Firing rate variation for different components
within Self-Attention module across blocks.

in the masking ratio and the decrease in the total number
of spikes. For example, at a masking rate of 50%, the
total number of spikes in the model decreased by 23.8%
compared to the unmasked model. Furthermore, when the
masking rate reached 75%, the total number of spikes in
the model was further reduced by 31.4% relative to the un-
masked counterpart. Importantly, this reduction resulted in
a minimal loss of precision of only 0.37%. These findings
suggest that our RSM method is an effective way to reduce
the number of spikes in the overall model, which has the
potential to improve efficiency and performance.

5. Exploration of the Utility of the RSM
Method in Other Modules

In the main text, the RSM approach is applied to the
query (Q), key (K), and value (V) components of the self-
concern (SA) module, as well as the multilayer perceptron
(MLP) module of the MST model. To further evaluate the
effectiveness and generality of this approach, we extended
the RSM method to other modules of the MST model. This
extension allows us to explore the potential benefits offered
by RSM in various aspects of the MST model and to evalu-
ate its ability to improve efficiency and performance.



Module SC1 Q K A V soft(A)*V Proj SC2 MLP1 MLP2 Accuracy (%)

Masking
Ratio
(%)

0 0.5 0.5 0.5 0 0 0 0 0 0 86.7
0 0.5 0.5 0.5 0.5 0 0 0 0 0 83.1
0 0.5 0.5 0.5 0.5 0.5 0 0 0 0 80.5
0 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 76.7
0 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0.1 75.2
0 0.5 0.5 0.5 0.5 0.5 0.5 0 0.1 0 75.7

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 74.46
0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 0 62.36
0 0.5 0.5 0.5 0.5 0.5 0.5 0 0.5 0 68.67
0 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0.5 67.91

Table 2: Comparative analysis of RSM application on different components in the MST.

Figure 4: The number of spikes variation of the overall
model with different masking ratios.

Tab. 2 presents the results of applying the RSM method
to several components of the MST model, including Query
(Q), Key (K) and Value (V), Attention (A), Softmax
(Attention)∗ Value (soft(A)∗ V), projection layer (Proj), and
multilayer perceptron (MLP) modules (MLP1 and MLP2).
In addition, the RSM method is used for the first and
second layer shortcut (SC1 and SC2) modules within the
Swin Transformer block, which serve as inputs to the self-
attention and MLP modules, respectively. These modules
are followed by a layer of IF neurons whose output spike
matrices are subjected to random mask pruning.

Tab. 2 shows the different effects of RSM on the accu-
racy of each module. Specifically, modules Q, K, and A
show relatively small accuracy degradation after masking,
while the other modules, especially the MLP module, show
greater sensitivity to changes in the masking ratio. This
finding suggests that reducing energy consumption while
maintaining accuracy may require adjusting the masking ra-
tio according to each module’s sensitivity to this process.
Therefore, this emphasizes the importance of considering
the unique characteristics of each module when applying
RSM to effectively achieve a balance of energy efficiency
and performance.

6. The Application of the RSM Method on Neu-
romorphic Datasets

Fig. 5 illustrates the fluctuations of the accuracy corre-
sponding to different masking ratios on the N-Caltech101
and CIFAR10-DVS datasets. The experimental results
show similarities to those observed in the static dataset.
First, in the SA and MLP modules, the accuracy decreases
as the masking ratio increases. However, the sensitivity of
these two modules to changes in masking rate is different.
In particular, the accuracy of the SA module remains rela-
tively stable over a specific range of masking ratios, while
the accuracy of the MLP module decreases more rapidly
and shows a high sensitivity to changes in masking ratios.
These findings provide valuable insights into the behavior
of the different modules when applied to the RSM method,
thus indicating the development of strategies to optimize en-
ergy efficiency and performance while minimizing the im-
pact on accuracy. Furthermore, these results show that the
RAM method is effective for both static and neuromorphic
datasets.

Figure 5: The impact of the RSM method on the perfor-
mance when applied to the SA and MLP modules on N-
Caltech101 and CIFAR10-DVS datasets, respectively, un-
der different masking ratios.



7. Robustness of the RSM Method
In addition to accuracy and power efficiency, robustness

is also a key aspect to evaluate the proposed RSM method.
To investigate the robustness of the MST model under dif-
ferent masking rates, different levels of pepper noise are in-
troduced in the input images and the ability of the model to
resist this noise under different masking rates is compared.
From Fig. 6, we can see that the accuracy of the model de-
creases as the pepper noise density increases. However, we
also observe that the model exhibits stronger noise robust-
ness at higher masking ratios.

More specifically, the accuracy gap between the model
with and without noise becomes smaller as the masking ra-
tio increases, indicating that the model with a larger mask-
ing ratio exhibits higher noise robustness. These results
indicate that the proposed RSM method not only reduces
the power consumption of the model, but also enhances
its noise immunity. As a result, this enhanced robustness
makes the model more suitable for deployment in noisy
real-world environments.

Figure 6: The impact of various pepper noise levels and
masking ratios on model robustness. The gap in accuracy
between the model with and without noise becomes smaller
as the masking ratio increases.
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