ICCV
#5238

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ICCV 2023 Submission #5238. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Appendix: Mixed Neural Voxels for Fast Multi-view Video Synthesis

Anonymous ICCV submission

Paper ID 5238

The supplementary material presents the following con-
tents: (1) A video named MixVoxels_Video.mp4 including
a simple introduction to our method and video comparisons
to other representative methods. (2) This appendix which
gives more details of our method and some extra experi-
ments.

1. Factorized Voxel-grid Representation

The voxel-grid representations require large GPU mem-
ory to store the cubically growing voxel numbers. To im-
plement the voxel-grid representations more memory effi-
cient, we use the tensor factorization technique proposed in
TensoRF [1] to reduce the memory footprint. A 3D scene
tensor can be factorized into multiple compact vector and
matrix (the Vector-Matrix decomposition [1]). Specifically,
for a 3D tensor 7 € RN=*NyxN: the VM factorization is
as follow [1]:

Ry Ro R3
1 2,3 2 1,3 3 1,2
T:E v, o M —I—E v, oM, +E v, oM, €8
r=1 r=1 r=1

where M23 ¢ RNvxN: M3 ¢ RNaXN: M2 ¢
RY=*Ny are matrix factors for two of the three axes. v} €
RN:, vZ € RV, v3 € R¥:= are corresponding vectors.
o is the outer-product operation. In MixVoxels, the static
density voxels S? and the variation field V are 3D tensors
and are factorized according to the above formulation. In
this way, the space complexity is reduced from O(n?) to
O(n?).

For the 4D voxel-grid feature representations S¢, G and
G°©, the last feature dimension is represented by a vector, the
factorization is [1]:

Ry Ro
1 2,3 2 1,3
T = E v, o M7 o bz,_o+ E vy, oM, obzr_1
r=1 r=1

- @
3
+ ZVE oM, ? o bs,

r=1

where b,. is the vector representing the last feature dimen-
sion. In MixVoxels, the static color voxels S¢, dynamic
density and color voxels G7 and G€ are 4D tensors and are
factorized with Eq 2.

Static RGB Dynamic Density Dynamic RGB

s 128 128 , s 512 512y sy 512 512 s

e —_— - — —_— — —

Figure 1. The architectures of all MLPs, including the networks for
static color, dynamic density and dynamic color. The static density
requires no MLP, because it is a scalar directly queried from the
voxel-grid representation.

D =64 D =128 D =256 D =384 D =512
Figure 2. The ablation of using different hidden dimensions D.

With the help of tensor factorization, the learned model
costs about S00MB for a 300-frame multi-view video scene.
For the voxel resolutsions, we follow [1] to start from an
initial low resolution of 2562, and upsample the resolution
at steps 1500, 2000, 2500, and 2750 with a linear increase
in the log space. The final resolution is set to 6403. The
voxel-grid feature dimensions of S¢, G and S¢ are set to
27, and the hidden dimensions of MLPs are set to 128 for
static color branch and 512 for dynamic branch. For train-
ing, we use Adam [2] optimizer with a learning rate of 0.02
for voxels and 3e — 3 for MLPs. The total variation loss [5]
is incorporated as a regularization to encourage the space
smoothness.

2. Architectures of MLPs

Fig 1 illustrates the architectures of different MLPs, in-
cluding the static RGB MLP, the dynamic density MLP
and dynamic RGB MLP. All input dimensions are set to
27, which is relatively small to reduce the memory foot-
print. All MLPs employ a three-layer architectures, includ-
ing two hidden layers and an output layer. For the static
RGB MLP, the hidden dimensions are set to 128. For the
dynamic branch, the hidden dimensions are set to 512 for
better parsing the temporal information.

For the inner-product queries, we integrate N temporal
queries into a matrix . Each row of W represents a corre-

ICCV
#5238

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#5238

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

ICCV 2023 Submission #5238. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Mask M Result

Variance D

w/o Blur

w/ Blur

Figure 3. The ablation of using gaussian blur. In the first row, the
temporal variance is directly calculated and without any other pro-
cess. In the second row, the temporal variance is gaussian blurred.

sponding time query. In this way, the inner-product queries
are unified to an MLP architecture. For the dynamic den-
sities, the output is a vector of N values corresponding to
different time steps. The dynamic RGB branch outputs a
vector of Np x 3 values, representing the 3 color channels
for each time step.

The choice of hidden dimensions in MLPs in the dy-
namic branch is also important to recover highly-dynamic
components. The two dynamic MLPs for density and color
have the same architecture which consists of three layers in-
serted by the activation layer, the dimension of hidden layer
is denoted as D. We study the effect of D by setting differ-
ent dimensions. Fig. 2 demonstrates the qualitative results.
Models with more hidden dimensions recover the moving
hand sharper. We intuitively speculate that networks with
larger hidden dimensions have greater capacity to better de-
compress the compact features stored in each voxel.

3. Variation Field

In this section, we supplement the details of the varia-
tion field. To make the variation field work better, we apply
some techniques: (1) Gaussian blur for reducing noisy tem-
poral variances. (2) Weighted BCE loss for balancing the
static and dynamic voxels. We will introduce the details of
the two tricks. Besides, we also visualize the variation field
in different views.

3.1. Gaussian Blur

The pixel-level temporal variance provide the supervi-
sion for training the variation field. Although the temporal
variance reflect the variation of a pixel, some isolated noises
are also incorporated, making some isolated dynamic vox-
els. The phenomenon is illustrated in Fig. 3. In normal case,
identifying a static voxel to a dynamic one (false negative)
will not affect the rendering quality. However, the isolated
false negative will cause some artifacts, which is illustrated
in the third column of Fig. 3. The phenomenon is because
that the surrounding dynamic voxels of these isolated false
negatives are not trained by the model, and the values of

Figure 4. Visualization of the variation field (the dynamic regions).

these isolated voxels are interpolated by the inaccurate sur-
rounding voxels. This will make the isolated false negatives
present a sudden change in colors and densities. To address
the problem, we simply apply the Gaussian Blur to the tem-
poral variance map. In this way, the isolated dynamic pixels
will be smoothed by the surrounding pixels. The learned
variation fields are also smoothed. The second row shows
the results of using gaussian blur, where the isolated noises
are removed. In detail, the gaussian kernel size is set to 31.

3.2. Weighted BCE

The static and dynamic samples are not balanced in a
typical dynamic scene. To better classify the static and dy-
namic points, we use the weighted BCE loss to multiply a
large balancing factor p for positive samples, as following:

£4(r) = g =0+ M(r) - Jox(N(r)

—(1 = M(r))log(1 — M(r))

3)

We empirically set p = 19 to trade off the recall and preci-
sion and found it works well for all datasets.

We visualize the learned variation field in different
views, shown in Fig. 4. We can observe that the dynamic
regions identified by the variation field tightly surround the
moving person. This makes MixVoxels can only process a
small number of dynamic querying.

4. Voxel Prunning

To accelerate the training, the RGB prediction cacula-
tions for the points with near to zero densities can be pruned
[4, 1]. For the dynamic branch, we prune the voxels with
two conditions: (1): the mean density is smaller than a pre-
defined threshold d;. (2): the difference between the max-
imum and minimum of densities over all time steps should
be smaller than a threshold d5. In practice, 4; = 0.00001
and do = 0.1. With the voxels satisfying the above con-
ditions, the calculation of RGB is ignored to reduce the
amount of computations.

5. More Results

We provide the comprehensive quantitative results for all
scenes in Tab. 1. For qualitative results for each scene, we
provide them in the supplemental video.

6. Dataset Collection

We provide two multi-view synchronized videos shown
in Fig. 5. The two dynamic scenes are solving-rubik where

ICCV
#5238

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

ICCV
#5238

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

ICCV 2023 Submission #5238. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Quantitative results on six different dynamic scenes [3].
We report the average performances in the last row.

Dataset PSNRT DSSIM| LPIPS] FLIP| JODt
MixVoxels-S

Spinach 31.8437 0.0193 0.1254 0.1228 8.19
Coffee 28.5421 0.0335 0.1610 0.1238 7.79
Salmon 29.2122 0.0324 0.1620 0.1144 7.96
Beef 32.8220 0.0172 0.1088 0.1107 8.24
Sear 31.5998 0.0147 0.1047 0.1273 8.39
Flame 32.1841 0.0153 0.1088 0.1239 8.35
Mean 31.0339 0.0221 0.1285 0.1204 8.15
Mix Voxels-M

Spinach 32.3087 0.0162 0.0991 0.1220 8.32
Coffee 29.4727 0.0262 0.1167 0.1223 7.99
Salmon 29.4414 0.0273 0.1280 0.1172 8.07
Beef 32.4231 0.0157 0.0920 0.1169 8.26
Sear 32.0474 0.0128 0.08438 0.1322 8.45
Flame 31.6447 0.0140 0.0896 0.1305 8.33
Mean 31.2230 0.0187 0.1017 0.1235 8.24
MixVoxels-L

Spinach 32.2538 0.0162 0.0988 0.1220 8.28
Coffee 29.6312 0.0244 0.1057 0.1253 8.05
Salmon 29.8134 0.0255 0.1161 0.1141 8.04
Beef 32.3960 0.0157 0.0882 0.1312 8.20
Sear 32.0950 0.0122 0.0800 0.1361 8.47
Flame 31.8344 0.0144 0.0875 0.1294 8.46
Mean 31.3372 0.0180 0.0961 0.1263 8.25
MixVoxels-X

Spinach 32.3091 0.0160 0.0622 0.1492 8.29
Coffee 30.3896 0.0232 0.0811 0.1069 8.20
Salmon 30.6021 0.0233 0.0777 0.1004 8.16
Beef 32.6293 0.0146 0.0572 0.1199 8.36
Sear 32.3310 0.0121 0.0526 0.1373 8.49
Flame 32.1037 0.0137 0.0508 0.1389 8.42
Mean 31.7274 0.0172 0.0636 0.1254 8.32

a man is solving a rubik cube with a relative fast speed,
and moving-cars where some cars are moving in an outdoor
scene. We collect the two scenes to test the ability of our
method to deal with (1) scene with high-dynamic motions
with fast moving speed. (2) scene with large areas of mov-
ing regions. To collect the synchronized video, we build a
capture system similar to DyNeRF [3], which consists of 24
GoPro 9 cameras. We record videos using the linear cam-

& - : =
. g z s q 7 P

» i A N — j o

< v = A 1 N

Ak ~ = (NLA

Figure 5. The above figure showcases our collected dynamic scenes: moving-cars (top) and sol

ving—rul;ik (bottom).

Figure 6. The multi-view synchronized GoPro 9 cameras.

era mode at a resolution of 2704 x1520 and frame rate of
30 FPS. We synchronized the frames by the timecode sys-
tem. The intrinsic and extrinsic parameters are estimated by
COLMAP.

References

[1] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. arXiv preprint
arXiv:2203.09517,2022. 1,2

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[3] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green,
Christoph Lassner, Changil Kim, Tanner Schmidt, Steven
Lovegrove, Michael Goesele, Richard Newcombe, et al. Neu-
ral 3d video synthesis from multi-view video. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5521-5531, 2022. 3

[4] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Advances
in Neural Information Processing Systems, 33:15651-15663,
2020. 2

[5] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenox-
els: Radiance fields without neural networks. arXiv preprint
arXiv:2112.05131,2021. 1

ICCV
#5238

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

