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A. Additional Implementation Details
A.1 Dataset details

On our synthetic datasets: kitty, bear, cow, and key
mouse, we render images of resolution 512 x 512 with Mit-
suba 3 [8], and we include details in the main paper, Sec. 4:
Ln 499-509. We set the camera Field of View (FOV) to be
35°, and evenly sample 200 camera locations on the upper
120° sphere. We randomly select 100 for training and test-
ing datasets respectively. An example of camera poses for
the synthetic glass kitty dataset is shown in Fig. 1.

For our real-world datasets with rendered training data:
dog, mouse, pig, and monkey which are released by
TLG [9], each dataset contains 10 real-world captures for
each object. Due to the lack of image data, we render 100
synthetic images with a resolution of 480 x 360 for train-
ing with the released ground truth mesh and environment
illumination with the same camera setup as our synthetic
datasets. We use the real-world captured images for testing
and evaluations. Fig. 2 displays a set of example images and
extracted masks for the synthetic and real-world datasets.

The object masks on each dataset are extracted with off-
the-shelf background removal tool [6], and illumination es-
timation for each dataset is detailed in A.2.

In our real-world dataset (cat), we capture 136 images
for training purposes, employing an iPhone 12 Pro Max.
The camera poses are processed through the iOS applica-
tion PolyCam [I1] for further refinement. Furthermore,
we capture the environmental illumination using the same
iPhone and subsequently applied post-processing using the
iOS application HDREye [4]. Notably, this experiment dis-
tinguishes our paper as the first in training on real-world
natural light scenes for transparent objects.

A.2 Tllumination Estimation For Synthetic Datasets

As acknowledged in Sec.3: Ln 251-265 of the main pa-
per, we design an algorithm to pre-process input images to
estimate the scene illumination as an environment map be-

Figure 1. Camera poses for synthetic glass kitty dataset. Our sam-
pled camera positions cover the upper 120° sphere. Blue points
denote the positions of training cameras, and red points denote the
positions of testing cameras. Line segments connected to the dots
symbolize camera ‘lookat’ directions.

fore training. The accuracy of our illumination estimation
relies on the coverage of the environment from the sampling
of camera poses and camera FOV, and the accuracy of esti-
mated camera parameters.

We assume the environment maps are of fixed resolu-
tion 250 x 500 for simplicity. Our estimation algorithm is
shown as follows: assuming we have already obtained ob-
ject masks for the current image set with [6], (1) for each
pair of image I; and mask M;, as well as the correspond-
ing camera intrinsic matrix K and camera extrinsic matrix
P!>, we initialize per-pixel camera rays p(t) = o + tw;
in world coordinates; (2) with each viewing ray direction,
we use inverse texture mapping to obtain texture coordi-
nates u and v from the environment map I' for viewing di-
rection wj; (3) we mask out the object region of the im-
age I;[j, k] = 0,if M, [j, k] = 1, leaving unrefracted back-
ground illumination, and map the image pixel color to cor-



(b) Real world data

Figure 2. Examples of images and masks from synthetic and real-
world datasets that NEMTO uses.

responding texture coordinates (u, v).

Our example reconstructed environment maps on the
synthetic training datasets can be seen in Fig. 3. The algo-
rithm cannot reconstruct the top region of each environment
map, as our camera positions are concentrated on the upper
hemisphere over the object. Therefore the combined view-
ing scope for all cameras in the dataset does not include the
upper part of each environment map.

A.3 Training Details

In the early stage of training, we observe that joint opti-
mization of ray refraction and geometry is difficult. There-
fore, for the first 200 epochs, we set the weights for refrac-
tion guiding loss L, refraction smoothness loss Ly and
RGB pixel loss Lpix to zero, to initialize the geometry for
the transparent object without entanglement with surface
appearance. After a few epochs, the Geometry Network op-
timizes an SDF that is a rough estimate of the object geome-
try, we then set back Ay = 100.0, Ay = 10.0 and A\,ix = 1.0
as the rough shape is established. As mentioned in Sec. 3.5
Ln 180 - 190 of the main paper, we adopt a weight decaying
strategy on L, to provide initial physically-guided supervi-
sion for Ray Bending Network on ray refractions. In the
final stage of training, the weight A for refraction guiding
loss is turned down, leaving pixel loss Ly as the major loss
term along with .

The training time takes around 6 hours on a single RTX
3090 Ti with 2000 epochs for each scene.

Ground Truth

Estimation

Figure 3. Examples of estimated environment illumination with
our proposed data pre-processing. Our method highly depends
on accurate camera estimation, and cannot extrapolate to unseen
illuminations.

Ground Truth

Eikonal Field

Figure 4. Examples of whole-image results of the Eikonal Field [3]
on our synthetic datasets.

A.4 Baseline Evaluation Details

All of our baseline methods except for Eikonal Fields [3]
are evaluated on ground truth images with their background
masked out, as we want to emphasize the image synthesis
quality on transparent objects.

Specifically, for the surface-based methods, i.e. IDR [14]
and PhySG [15], we synthesize results with white back-
grounds using optimized object masks during rendering.
Therefore, we evaluate quantitative metrics by comparing
model outputs with the masked ground truth. For volume-
based methods with no specific object surface, we train
and evaluate the model of NeRF [10] directly with masked
ground truth for a fair comparison. However, Eikonal
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Figure 5. NEMTO Network Architecture. We show the network layout of the two MLPs that we use to represent a transparent object.
Our Geometry Network fg models object geometry through the zero-level set of an implicit signed distance function. Our Ray Bending
Network Re models the refraction of each viewing ray through the transparent object.

Synthetic |Chamfer L;(1073)

Method Kitty Bear Key Mouse Cow
SDF-A 10.24  8.73 7.28 6.89
NEMTO 222 171 2.27 2.60

Table 1. Quantitative evaluation on recovered meshes of synthetic
datasets with SDF-A. We use Chamfer Distance as the metric for
our evaluation[5].

Fields [3] fails to converge on our masked ground truth
dataset and outputs all-zero values, as it cannot separate the
opaque scene and the refractive part. Therefore, although
Eikonal Field is also volume-based, we train and evaluate
its model with the original unmasked images.

Fig. 4 shows a few examples of the full images of the
Eikonal Fields model output, as Fig. 3 of our main paper
only provides zoomed-in detail images for the model out-
puts. Again, NEMTO can work with real-world transparent
objects and synthesize physically-plausible results.

A.5 Network Architecture

Our Geometry Network fy adopts the same MLP com-
ponents as [14]. We use 8 layers with hidden width of 512,
softplus activation: z — %ln(l + €#%) with 8 = 100, and
a skip connection from input to the 4th layer. The network
weights are initialized such that the initial SDF shape ap-
proximates a unit sphere as in [1].

The Ray Bending Network Rg consists of 8 layers with
layer width 512, followed by the activation function ELU.
1 is randomly initialized from [1.2, 3.0]. The input ray
direction r, surface normal n and coordinate x are trans-

RealWorld 1Chamfer L;(1073)
Method Dog Pig Mouse Monkey
TLG [9] 585 1832 3512 14.54
NEMTO 2.65 3.14 6.18 9.22

Table 2. Quantitative evaluation on recovered meshes of real-world
datasets (trained with rendered data)with TLG [9]. We once again
use Chamfer Distance as the metric for our evaluation[5].

formed by Fourier output ~y(-) separately with different
numbers of bands for learning high-frequency information
[12]. A skip connection is again used to concatenate input
to the 4th layer. We set v, = 3, 7» = 8, 7. = 4, and we use
the tanh function at the end for a valid output.

The network architecture of NEMTO is shown in Fig. 5.

B. Additional Results

B.1 Ablation on SDF-A

As mentioned in Sec. 4: Ln 697 - 701 and Ln 737 - 744
of the main paper, SDF-A is a naive version of NEMTO
without using the Ray Bending Network. We demonstrate
the advantage of our synthesis using Ray Bending Network
over the analytical refraction of SDF-A by Fig. 6 and Tab. 1.
We can see that SDF-A optimizes a slightly more inaccurate
object geometry than ours, but the former’s synthesized im-
ages due to analytical refraction are much less faithful to the
ground truth than those of our Ray Bending Network.
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Figure 6. Qualitative comparison of the estimated surface normals
and synthesized images between NEMTO and SDF-A on the syn-
thetic glass cow dataset. Note the inaccurate refraction caused by
analytical refraction in SDF-A.

Novel View Relighting

Method PSNRT SSIM1 LPIPS| PSNR?T SSIM{T LPIPS |

M-NeRF 23.59 0.86 0.16 - - -
NVDiffRec  20.45 0.79 0.21 14.92 0.69 0.24
NEMTO 28.86 0.94 0.07 27.24 0.92 0.06

Table 3. Quantitative comparisons with Multi-NeRF (containing
Ref-NeRF [13] and Mip-NeRF360 [2]) and NVDiffRec [7]. Multi-
NeRF is not designed for relighting, therefore, we omit the relight-
ing evaluation to Multi-NeRF.

B.2 Synthetic Datasets Results

We show additional novel view synthesis results on all of
our synthetic datasets in Fig. 8 and Fig. 9. The synthe-
sized novel views are physically-plausible and faithful to
the ground truth reference renderings. NEMTO is able to
model complex light reflection and refraction, even in chal-
lenging cases such as the synthetic glass cow.

We also provide quantitative comparisons with several
more recent works [2, 7, 13] in Tab. 3. As explained in
the main paper, these works do not consider light transmis-
sion for novel view synthesis. Those allowing relighting use
Disney BRDF as the material decomposition model, which
is not suitable for relighting transparent objects. Conse-
quently, their results on novel view and relighting synthesis
are expected to be similar, if not slightly better, than those
shown in the main paper. We provide the comparative re-
sults as evidence supporting this point.

NEMTO Novel View Synthesis

Figure 7. Quantitative results on novel view synthesis results from
NEMTO trained on real-world captured data.

B.3 Real World Datasets with Captured Training Data

We show additional novel view synthesis results on our cap-
tured cat dataset in Fig. 7.

B.4 Real World Datasets with Rendered Training Data

Geometry estimation. Fig. 10 and Tab. 2 show the quality
of estimated geometry for the real-world transparent objects
from NEMTO and TLG [9]. NEMTO archives finer details
on object surfaces, such as the shape of the dog’s mouth
and the pig’s ears, as well as the eye socket section of the
mouse. This is due to NEMTO’s dense sampling of input
viewpoints compared to TLG. However, as NEMTO relies
heavily on silhouette loss for geometry regulation, it cannot
accurately model certain detailed concave sections of the
object, such as the left arm of the mouse. Still, NEMTO
achieves an overall better estimation of geometry than TLG
shown in Tab. 2, and we do not require a very large synthetic
dataset with 1.5k HDR environment maps for network train-
ing as needed by TLG.

Novel view and relighting synthesis.  In fig. 11, 12,
and 13, we show a more comprehensive collection of novel
views and relighting synthesis on our real-world datasets.
The quality of our synthesis is dependent on estimated en-
vironment illumination, which can be inaccurate in the case
of real-world datasets. Despite such inaccuracy, we gener-
ate high-quality novel views and relighting for real-world
transparent objects. The relighting synthesis is produced



with the environment map in the first row of Fig. 3.
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Reference Novel View Reference Novel View

Figure 8. Novel view synthesis on the synthetic glass kitty and glass bear. Our synthesized images are physically-plausible and faithful to
reference images.
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Figure 9. Novel view synthesis on the synthetic Key Mouse and Cow.
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Figure 10. Estimated geometry comparison on real-world datasets between NEMTO and TLG [9]. NEMTO estimates geometry with more
refined details such as the ear section of the pig model and the mouse section of the dog model.
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Figure 11. Novel view and relighting synthesis on the real-world mouse dataset. Results are best viewed on a tablet or computer screen.
The ray bending network of NEMTO gives physically-plausible results to refract rays through the body of the object. Some inaccuracies
persist, partially due to the error in estimating real-world environment illumination.
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Figure 12. Novel view and relighting synthesis on the real-world dog dataset. Results are best viewed on a tablet or computer screen.
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Figure 13. Novel view and relighting synthesis on the real-world pig dataset. Results are best viewed on a tablet or computer screen.
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