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Supplementary Material

In the following, we provide more details about our
method. First, we present the derivation of Eqs. 5 and 6
(Sec. A), and the proof of Theorem 1 (Sec. B). Second, we
introduce the dataset (Sec. C) we used in the experiments
and show more quantitative and qualitative results (Sec. D)
to further demonstrate the performance of our model. Fi-
nally, we provide implementation details of our method
(Sec. E).

A. Derivation of Equation 5 and Equation 6

We calculate the second-order derivatives of the hash ta-
ble parameters Ω as
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and the SDF network parameters Θ as
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B. Derivation of Theorem 1
First we recall the Definition 1.

Definition 1 Given a ReLU based MLP f with L hidden
layers taking x ∈ Rd as input, it computes the output y =
HLg(HL−1 . . . g(H1x)), where Hl ∈ Rnl × Rnl−1 , l ∈
{1, . . . , L} is the layer index, and g is the ReLU function.
We define P j

l ∈ Rnl−1 × R1 and Si
l ∈ R1 × Rnl as

P j
l = GlHl−1 . . . G2H

( ,j)
1

Si
l = H

(i, )
L GL . . . Hl+1Gl+1

(3)

where H
( ,j)
1 is the jth column of H1, H(i, )

L is the ith row

of HL, and Gl =

{
1, Hl−1 . . . g(H1x) > 0

0, otherwise
.

Now the second-order derivatives of a ReLU-based MLP
with respect to its input and intermediate layers can be de-
fined as follows.

Theorem 1 (Second-order derivative of ReLU-based MLP)
Given a ReLU based MLP f with L hidden layers with



the same definition in Definition 1. The second-order
derivative of the MLP f is:
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is the matrix element (i,j) of ∂y
∂x , and Si

l and

P j
l are defined in Definition 1.

Proof First, by applying the chain rule, we have
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we can further derive that
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Second, we define xl ∈ Rnl , l ∈ {1, . . . , L − 1} as xl =
g(Hl−1xl−1), specifically x1 = g(H1x). Then we have

y = HLxL−1. (14)

Then we calculate
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Since y = HLxL−1, we have ∂2y
∂x2
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∂2y

∂x2
= 0 (17)

C. Dataset
Dataset for Static Scene Reconstruction. For static

scene reconstruction, we use 15 scenes from the DTU
dataset [5], same as those used in NeuS [13], with a wide va-
riety of materials, appearance and geometry. These scenes
involve challenging cases for reconstruction algorithms,
such as non-Lambertian surfaces and fine structures. Each
scene contains 49 or 64 images with an image resolution of
1600 × 1200. We split each scene into training and testing
parts following NeuS [13]. Specifically, we set images in-
dexed at 8, 13, 16, 21, 26, 31, 34 and 56 if available for
testing and the other images for training. We train and test
each scene with foreground masks provided by IDR [15].

Dataset for Dynamic Synthetic Scene Reconstruction.
We use three synthetic scenes with various types of defor-
mations and motions to evaluate our method. The Lego
scene is shared by NeRF [7] in form of Blender [1] file. We
transform the Lego object into different poses and positions



and render images at the resolution of 400 × 400 in Blender.
The Lego scene contains 150 frames with 40 training cam-
era views and 40 test camera views. The human scene is
provided by RenderPeople[2]. We render images at the res-
olution of 512×512 following [10], and the whole sequence
contains 100 frames with 48 camera views for training and
12 camera views for testing. The Lion scene is shared by
Artemis [6], which has 177 frames with 30 camera views
for training and 6 camera views for testing. Dataset for
Dynamic Real Scene Reconstruction. We select three se-
quences from the Dynacap dataset [4], denoted as D1, D2
and D3, for real-scene reconstruction. These sequences
are captured under a dense camera setup at a resolution
of 1285 × 940. We crop the images with a 2D bounding
box which is estimated from the foreground masks to ob-
tain the target images at a resolution of 512×512. For each
sequence, we choose 500 frames containing large move-
ments for evaluation to show our advantages (D1: 17,760
to 18,260, D2: 6,095 to 6,595, D3: 3,450 to 3,950). The
D1 sequence has 94 camera views, from which we pick 9
camera views (7, 17, 27, 37, 47, 57, 67, 77, 87) for testing
and the rest of the views for training. The D2 sequence has
50 camera views, from which we pick 5 camera views (7,
17, 27, 37, 47) for testing and the rest of the views for train-
ing. The D3 sequence has 101 camera views, from which
we pick 10 camera views (7, 17, 27, 37, 47, 57, 67, 77, 87,
97) for testing and the rest of the views for training. We
train and test each scene with foreground masks provided
by Dynacap [4]. We choose a sequence of a human walking
around in the D1 sequence, which contains 200 frames, to
conduct the ablation study.

D. Additional Result
Video Results. We provide a supplementary video to

better demonstrate the qualitative results of our method. We
highly encourage the readers to check our video.

Static Scene Reconstruction. In Tab. 1, we provide the
per-scene breakdown analysis of the quantitative compar-
isons on the DTU dataset presented in the main paper (Tab.
1). We also present additional qualitative comparisons on
the DTU dataset in Fig. 1. Additionally, we provide a quan-
titative comparison with a concurrent work, Voxurf [14], in
Tab. 2 under its experimental settings.

Dynamic Scene Reconstruction. In Tab. 3, we present
the quantitative comparison between our method and
Instant-NGP [8] for synthetic scenes.

Effect of the accuracy of Global Transformation Pre-
diction. For our global Transformation Prediction compo-
ment, a few minor inaccuracies will not have a significant
impact on the final result, since our incremental training
strategy can further fine-tune the model parameters to com-
pensate for these errors. To illustrate this statement, we
conduct an experiment on one sequence in the DynaCap.

We use the R and T of the SMPL obtained by EasyMo-
cap as ground truth, and then add different levels of noises
to get different accuracy levels of R and T . The results in
Fig. 2 demonstrate that our model is rather robust for the
predicted rotation R and transition T . The reconstruction
performance only drops when the predicted transition and
rotation are very inaccurate.

E. Implementation Details

E.1. Baselines

COLMAP [11, 12]. We directly refer to COLMAP’s
results on the DTU dataset reported in NeuS[13].

NeuS [13]. The Chamfer Distance scores of NeuS shown
in the paper are directly referred to the results reported in the
original paper. The geometry reconstruction results are pro-
duced using the officially released pre-trained models with
mask supervision. The PSNR scores and novel view syn-
thesis results are obtained by training the officially released
code on the DTU training dataset with mask supervision,
and testing it on the DTU testing dataset.

Instant-NGP [8]. We use the officially released code
to train the model on the DTU dataset for 50k iterations.
The training takes about 5 minutes. For dynamic scenes,
we train the model separately for each frame from scratch,
and limit the training time to 20 seconds which is consistent
with our method.

Instant-NSR [16]. The results on DTU dataset are pro-
vided by the authors.

Voxurf [14]. The results on DTU dataset are refered to
the original paper.

D-NeRF [9]. We use the officially released code to train
the model for 800k iterations. The training time of D-NeRF
on real scenes is longer than on synthetic scenes, 50 and
20 hours, respectively. This is because the length of real
sequences is longer than that of the synthetic sequences,
which are around 500 frames and 150 frames, respectively.
Moreover the number of camera views for real scenes is
greater than for synthetic scenes. For long sequences with
dense camera views, the model cannot upload all the images
at once due to the GPU memory limitation, so extra time is
needed to load the images during training.

TiNeuVox [3]. We use the officially released code and
train the model for 80k and 150k iterations on synthetic
scenes and real scenes, respectively. Due to the same rea-
son mentioned above, extra time is needed during the train-
ing on real scenes. The training time of TiNeuVox on real
scenes is longer than on synthetic scenes, 3 and 1 hours,
respectively.

https://github.com/Totoro97/NeuS
https://github.com/NVlabs/instant-ngp
https://github.com/albertpumarola/D-NeRF
https://github.com/hustvl/TiNeuVox



Table 1. Quantitative comparisons on the DTU dataset. We color code the best and second best results. Our method outperforms other
baselines for geometry reconstruction regarding the Chamfer Distance (CD) and is on par with Instant-NGP of novel view synthesis in
terms of PSNR.

COLMAP NeuS Instant-NGP Instant-NSR Ours

Runtime 1h 8 h 5 min 8.5 min 5 min

ScanID CD ↓ PSNR↑ CD ↓ PSNR↑ CD↓ PSNR↑ CD↓ PSNR↑ CD↓
scan24 0.81 26.49 0.83 28.32 1.68 23.86 2.86 28.44 0.56

scan37 2.05 26.17 0.98 27.19 1.93 24.97 2.81 27.14 0.76

scan40 0.73 27.66 0.56 30.45 1.57 25.3 2.09 29.70 0.49

scan55 1.22 27.78 0.37 29.81 1.16 25.43 0.81 29.67 0.37

scan63 1.79 30.63 1.13 31.22 2.00 29.52 1.65 31.75 0.92

scan65 1.58 27.42 0.59 27.78 1.56 26.17 1.39 27.83 0.71

scan69 1.02 25.83 0.60 24.79 1.81 22.93 1.47 24.84 0.76

scan83 3.05 30.00 1.45 31.23 2.33 26.72 1.67 31.24 1.22

scan97 1.40 26.40 0.95 26.96 2.16 25.94 2.47 26.86 1.08

scan105 2.05 29.63 0.78 30.62 1.88 27.71 1.12 30.57 0.63

scan106 1.00 25.87 0.52 25.62 1.76 23.12 1.22 26.05 0.59

scan110 1.32 28.82 1.43 28.6 2.32 25.44 2.30 28.93 0.89

scan114 0.49 28.80 0.36 29.5 1.86 26.7 0.98 28.98 0.40

scan118 0.78 27.36 0.45 27.91 1.80 25.13 1.41 27.82 0.48

scan122 1.17 31.19 0.45 32.93 1.72 28.19 0.95 32.48 0.55

mean 1.36 28.00 0.77 28.86 1.84 25.81 1.68 28.82 0.70

Reference image Ours (5 min) NeuS (8 h) Instant-NGP (5 min)

sc
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Figure 1. Qualitative comparisons on the DTU dataset for static scene geometry reconstruction and novel view synthesis. Our method
demonstrates high-quality rendering quality, superior to NeuS and Instant-NSR, and comparable to Instant-NGP in terms of complex texture
reconstruction. In addition, it outperforms all the baselines regarding 3D geometry reconstruction, with fine details without inducing noise.



Table 2. Quantitative comparison between our method and Vox-
urf [14], using the DTU dataset and the experimental settings em-
ployed by Voxurf.

Voxurf Ours

Runtime 16 min 5 min
ScanID PSNR↑ CD↓ PSNR↑ CD↓
scan24 27.89 0.65 28.44 0.56
scan37 26.90 0.74 26.53 0.76
scan40 28.81 0.39 29.70 0.49
scan55 31.02 0.35 31.47 0.37
scan63 34.38 0.96 33.74 0.92
scan65 31.48 0.64 30.99 0.71
scan69 30.13 0.85 28.77 0.76
scan83 37.43 1.58 36.78 1.22
scan97 28.35 1.01 28.24 1.08

scan105 32.94 0.68 33.30 0.63
scan106 34.17 0.60 33.91 0.59
scan110 32.70 1.11 34.50 0.89
scan114 30.97 0.37 31.14 0.40
scan118 37.24 0.45 37.17 0.48
scan122 37.97 0.47 37.41 0.55

mean 32.16 0.72 32.14 0.70

Instant-NGP Ours

Dataset PSNR↑ CD↓ PSNR↑ CD↓
Lego 29.05 37.19 29.5 17.1
Lion 33.09 - 33.60 -
Human 36.18 4.48 33.20 1.86

Runtime 1h 1h

Table 3. Quantitative comparison between our method and
Instant-NGP [8] on synthetic scenes. The Chamfer Distance of
Lion sequence is omitted since the ground truth geometry is not
provided.
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Figure 2. Influence of the predicted transformation accuracy to
the reconstruction quality. We use the rotation R and transition T
of SMPL as ground truth, and then add different levels of noise for
different levels of accuracy.

E.2. Network Architecture

As shown in Fig 3, the network architecture of NeuS2
consists of the following components: (a) a multi-resolution
hash grid with 14 levels of different resolutions ranging
from 16 to 2048; (b) an SDF network modeled by a 1-layer
MLP with 64 hidden units; (c) an RGB network modeled
by a 2-layer MLP with 64 hidden units.

E.3. Training Details

Unbiased Volume Rendering. To render an image, we
apply the unbiased volume rendering of NeuS [13]. That
is, we first transform the signed distance field into a volume
density field ϕs(f(x)), where ϕs(x) = se−sx/(1 + e−sx)2

is the logistic density distribution, which is the derivative
of the Sigmoid function Φs(x) = 1/(1 + e−sx) and s
is a learnable parameter. Next, we construct an unbiased
weight function in the volume rendering equation. Specif-
ically, for each pixel of an image, we sample n points
{p(ti) = o+ tiv|i = 0, 1, . . . , n− 1} along its camera ray,
where o is the center of the camera and v is the view direc-
tion. By accumulating the SDF-based densities and colors
of the sample points, we can compute the color Ĉ of the ray
with the same approximation scheme as used in NeRF [7]
as

Ĉ(o,v) =

n−1∑
i=0

T (ti)α(ti)c(p(ti),v) (18)

where T (ti) is the discrete accumulated transmittance de-
fined by T (ti) =

∏i−1
j=0(1 − α(tj)), and α(ti) is a discrete

density value defined by

α(ti) = max
(Φs(f(p(ti)))− Φs(f(p(ti+1)))

Φs(f(p(ti)))
, 0
)
. (19)

As the rendering process is differentiable, we can learn the
signed distance field f and the radiance field c from the
multi-view images.

Ray Marching Strategy. We adopt a ray marching ac-
celeration strategy used in Instant-NGP[8]. That is, we
maintain an occupancy grid that roughly marks each voxel
grid as empty or non-empty. The occupancy grid can effec-
tively guide the marching process by preventing sampling
in empty spaces and, thus, accelerate the volume rendering
process. We periodically update the occupancy grid based
on the SDF value predicted by our model. In detail, we first
use the SDF value d to calculate the density value ϕs(d) for
each grid, where ϕs(x) = se−sx/(1 + e−sx)2 is the logis-
tic density distribution and s is a learnable parameter. We
then use the density value to update the occupancy grid in
the same way as Instant-NGP[8]. Additionally, to achieve
faster convergence, we sample 90% rays on the foreground
pixels and 10% rays on the background pixels.

Hyperparameters. For static scene reconstruction, we
train our model for 15k iterations, which takes around 5
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Figure 3. A visualization of the network architecture of NeuS2.

minutes. For dynamic scene reconstruction, we train the
first frame from scratch for 2k iterations (4k iterations in
particular for the Lego sequence due to its complex geom-
etry), which takes about 40 seconds; then train each sub-
sequent frame for 1.1k iterations, where we optimize the
global transformation independently for the first 100 itera-
tions and we fine-tune the network parameters and global
deformation together for the remaining iterations.
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