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This supplementary contains the following contents:

- More details on the VDW dataset.

- More implementation details for NVDS.

- More details on experimental settings.

- More quantitative and qualitative results.

We also elaborate a demo consisting of many video visual-
izations and the illustration of our framework.

1. More details on the VDW Dataset
1.1. Dataset Construction

Data Acquisition and Pre-processing. Here we add more
details on data acquisition and pre-processing (Sec. 4, line
466, main paper). Having obtained the raw videos, we use
FFmpeg [4] and PySceneDetect [13] to split all the videos
into 104,582 sequences. We manually check and remove
the duplicated, chaotic, and blur scenes. Videos that are
wrongly split by the scene detect tools are also removed.
Finally, we reserve 32,405 videos with more than six mil-
lion frames for disparity annotation.
Disparity Annotation. In Sec. 4, line 474 of the main
paper, we mentioned that the disparity ground truth is ob-
tained via sky segmentation and optical flow estimation.
Here we specify the details. Compared with common prac-
tice [15, 20], we introduce a few engineering improve-
ments to make the disparity maps more accurate. As the
sky is considered to be infinitely far, pixels in the sky re-
gions should be segmented and set to the minimum value
in the disparity maps. We find that using a single seg-
mentation model [1, 8] like prior arts [15, 20] causes er-
rors and noises in the sky regions. Hence, we generate the
sky masks in a model ensemble manner. Each frame along
with its horizontally flipped copy are fed into two state-of-
the-art semantic segmentation models SegFormer [21] and
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Figure 1: Model ensemble strategy for sky segmentation
on VDW dataset. White area represents sky regions. Errors
and noises in the rectangles are removed by model ensemble
and voting, which improves the quality of the ground truth.

Mask2Former [3], which yields four sky masks in total. A
pixel is considered as the sky when it is positive in more
than two predicted sky masks. Besides, we also fill the con-
nected regions with less than 50 pixels to further remove the
noisy holes in the sky masks. Such ensemble strategy can
improve the quality of the ground truth as shown in Fig. 1,
and consequently improves the performance of the trained
models, especially on skylines as shown in Fig. 6 and 8.

Following the practice of previous single-image depth
datasets [15, 20], we adopt a state-of-the-art optical flow
model GMFlow [22] to generate the ground truth disparity
of the left- and right-eye views. The estimated optical flow
is bidirectional. We perform a consistency check between
the optical flow pairs to obtain the valid masks for train-
ing. We adopt the adaptive consistency threshold for each
pixel as [11]. The ground truth of each video is normalized
by its minimum and maximum disparity. Then, the dispar-
ity value is discretized into 65,535 intervals. Fig. 4 shows
more examples of our VDW dataset.
Invalid Sample Filtering. Having obtained the annota-
tions, we further filter the videos that are not qualified for
our dataset. According to optical flow and valid masks,
samples with the following three conditions are removed:



Figure 2: The word cloud of our VDW dataset.

1) more than 30% of pixels in the consistency masks are
invalid; 2) more than 10% of pixels have vertical disparity
larger than two pixels; 3) the average range of horizontal
disparity is less than 15 pixels. Then, we manually check
all the videos along with their corresponding ground truth,
and remove the samples with obvious errors. Finally, we re-
tain 14,203 videos with 2,237,320 frames in VDW dataset.

1.2. Data Statistics

Here we add more statistics of VDW. Taking over 6
months to process, our VDW training set contains 14,203
videos with 2,237,320 frames. The detailed data sources of
training set and test set are listed in Table 1 and Table 2 re-
spectively. Frame rates of all videos are over 24 fps. The
minimum frame number is 18 while the maximum is 8,005.

To verify the diversity of objects in our videos. We con-
duct semantic segmentation with Mask2Former [3] trained
on ADE20k [26]. All the 150 categories are covered in our
dataset. The five categories that present most frequently
are person (97.2%), wall (89.1%), floor (63.5%), ceiling
(46.5%), and tree (42.3%). Each category can be found in
at least 50 videos. Fig. 2 and Fig. 3 show the word cloud
and detailed statistics of all the 150 categories.

1.3. Releasing of VDW Dataset.

VDW dataset will be legally released following previ-
ous open-source datasets with movie data, e.g., Hollywood
3D [5] and MovieNet [6]. An official website will be built
for downloading and applications. Only applicants who
agree to our academic-research-only conditions and terms
will be given access.

2. More Implementation Details for NVDS
2.1. Decoder Architecture

Here we specify the decoder architecture. The decoder
architecture is illustrated in Fig. 5. To fuse the depth-
aware features from the backbone [21] and temporal fea-
tures from the cross-attention module, feature fusion mod-
ules (FFM) [8, 9] and skip connections are adopted. Reso-

Sources Titles Videos Frames

Documentaries

Deepsea Challenge 210 38,078
Kingdom of Plants 253 95,742
Little Monsters 242 50,420
Jerusalem 37 21,574

Animations Coco 1,079 146,002
Kung Fu Panda 3 959 68,405

Movies

Exodus: Gods and Kings 1,339 99,146
Geostorm 857 52,028
Hugo 301 25,091
Mission: Impossible-Fallout 664 46,344
Noah 1,160 85,161
Pompeii 158 10,112
Spider-Man: No Way Home 914 75,077
The Legend of Tarzan 735 64,840
The Three Musketeers 253 18,180
Gravity 191 38,332
Silent Hill 2 72 5,076
Transformers: Age of Extinction 1,323 84,619
Doctor Strange 299 23,779
Battle of the Year 454 19,613
Justice League 428 37,202
The Hobbit 2 644 53,391
The Great Gatsby 729 49,079
Billy Lynn’s Long Halftime Walk 242 29,137

Web Videos YouTube 514 40,897
bilibili 146 17,243

All − 14,203 2,237,320

Table 1: Video and frame numbers statistics of VDW
training set. Our VDW dataset contains 14,203 videos
from movies, animations, documentaries, and web videos.

Sources Titles Videos Frames

Movies
Eternals 39 4,802
Everest 17 2,922
Fantastic Beasts and Where to Find Them 17 27,27

Animation Frozen 2 10 1,098

Web Videos bilibili 7 1,073

All − 90 12,622

Table 2: Video and frame numbers statistics of VDW test
set. VDW test set adopts different data sources from train-
ing data, i.e., different movies, web videos, or animations.

lutions are gradually increased while channel numbers are
decreased. At last, we use an adaptive output module to
adjust the channel and restore the disparity maps.

2.2. Loss Function

As mentioned in Sec. 3.3, line 352 in the main paper, the
training loss consists of a spatial loss and a temporal loss.
Here we specify the computation process.

For the spatial loss, we adopt the widely-used affinity
invariant loss and gradient matching loss [14, 15] as Ls. For
the affinity invariant loss, let D and D∗ denote the predicted
disparity and ground truth respectively, we first calculate the



Figure 3: The statistics of the 150 semantic categories in VDW dataset.

scale and shift:

t(D) = median(D), s(D) =
1

M

M∑
i=1

|Di − t(Di)| , (1)

where M denotes the number of valid pixels. The prediction
and the ground truth are aligned to zero translation and unit
scale as follows:

D̃ =
D − t(D)

s(D)
, D̃∗ =

D∗ − t(D∗)

s(D∗)
. (2)

Then the affinity invariant loss can be formulated as:

Laf =
1

M

M∑
i=1

|D̃ − D̃∗|. (3)

Besides, we also adopt the multi-scale gradient matching
loss [15], which can improve smoothness of homogeneous
regions and sharpness of discontinuities in the disparity
maps. The gradient matching loss is formulated as:

Lgrad =
1

M

K∑
k=1

M∑
i=1

(|∇xR
k
i |+ |∇yR

k
i |), (4)

where Ri = D̃i − D̃∗
i , and Rk denotes the difference be-

tween the disparity maps at scale k = 1, 2, 3, · · · ,K (the
resolution is halved at each level). Following [14], we set

K = 4 and set the weight β of Lgrad to 0.5. The spatial
loss can be expressed as:

Ls = Laf + βLgrad, (5)

Temporal loss. In line 362 of the main paper, we men-
tioned that the temporal loss is masked with a visibility
mask On⇒n−1 calculated from the warping discrepancy be-
tween frame Fn and the warped frame F̂n−1. This mask is
obtained by:

On⇒n−1 = exp(−γ||Fn − F̂n−1||22) . (6)

We set γ = 50 and use bilinear sampling layer for warping.

3. More Experimental Results

3.1. Depth Metrics

Here we specify the evaluation metrics for depth accu-
racy. we adopt commonly-applied depth evaluation metrics:
Mean relative error (Rel) and accuracy with threshold t.
Mean relative error (Rel): 1

M

∑M
i=1

||Di−D∗
i ||1

D∗
i

;

Accuracy with threshold t: Percentage of Di such that
max(Di

D∗
i
,
D∗

i

Di
) = δ < t ∈

[
1.25, 1.252, 1.253

]
, where

M denotes pixel numbers, Di and D∗
i are prediction and

ground truth of pixel i.



Figure 4: More examples of our VDW dataset. Sky regions and invalid pixels are masked out.
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Figure 5: The architecture of decoder.

DPT-L [14] NeWCRFs [23] Midas-v2 [15] Stabilization Network

FLOPs (G) 1011.32 550.47 415.24 254.53
Params (M ) 341.26 270.33 104.18 88.31

Table 3: Comparisons of FlOPs and model parameters.

Method δ1 ↑ δ2 ↑ δ3 ↑ Rel ↓ OPW ↓
Midas [15] 0.644 0.853 0.928 0.347 0.647
DPT [14] 0.724 0.890 0.950 0.266 0.461

ST-CLSTM [24] 0.461 0.708 0.836 0.589 0.455
FMNet [19] 0.465 0.712 0.837 0.584 0.388
DeepV2D [17] 0.522 0.728 0.833 0.628 0.425
WSVD [18] 0.621 0.825 0.912 0.379 0.437
Robust-CVD [7] 0.658 0.855 0.928 0.334 0.251

Ours(Midas) 0.694 0.879 0.943 0.286 0.164
Ours(DPT) 0.731 0.895 0.952 0.259 0.138

Table 4: Comparisons on VDW dataset. The first 2 rows
show the results of different single-image depth predictors.
The next 5 rows contain video depth approaches. The last 2
rows consist of the results of our NVDS. Best performance
is in boldface. Second best is underlined.

3.2. Model Efficiency

Here we evaluate the efficiency of the proposed Neural
Video Depth Stabilizer (NVDS) in detail. Model parame-
ters and FLOPs are reported in Table 3. The FlOPs are eval-
uated on a 384× 384 video with four frames. The stabiliza-
tion network of NVDS only introduces limited computation
overhead compared with the off-the-shelf depth predictors.

3.3. More Quantitative Comparisons

In the main paper, only δ1, Rel, and OPW are reported.
The additional results on the VDW and the Sintel [2] dataset
are shown in Table 4 and Table 5. Besides, as CVD [10] and
Zhang et al. [25] cannot produce results on 11 of 23 videos
in Sintel [2] dataset, we additionally report the results on
the other 12 videos in Table 6.

3.4. More Qualitative Results.

We show more visual comparisons in Fig. 6, 7, 8 and
9. Please refer to the supplementary video for video depth
visualization results. We draw the scanline slice over time.
Fewer zigzagging pattern means better consistency.

Method δ1 ↑ δ2 ↑ δ3 ↑ Rel ↓ OPW ↓
Midas [15] 0.485 0.693 0.787 0.410 0.843
DPT [14] 0.597 0.768 0.846 0.339 0.612

ST-CLSTM [24] 0.351 0.571 0.706 0.517 0.585
FMNet [19] 0.357 0.579 0.712 0.513 0.521
DeepV2D [17] 0.486 0.674 0.760 0.526 0.534
WSVD [18] 0.501 0.709 0.804 0.439 0.577
CVD [10] 0.518 0.741 0.832 0.406 0.497
Robust-CVD [7] 0.521 0.727 0.833 0.422 0.475
Zhang et al. [25] 0.522 0.727 0.831 0.342 0.481

Ours(Midas) 0.532 0.731 0.833 0.374 0.469
Ours(DPT) 0.591 0.770 0.849 0.335 0.424

Table 5: Comparisons on the Sintel dataset. We only re-
port CVD [10] and Zhang et al. [25] on the 12 videos with
valid outputs, while other methods are on the 23 videos.

Method δ1 ↑ δ2 ↑ δ3 ↑ Rel ↓ OPW ↓
Midas [15] 0.670 0.853 0.902 0.246 0.712
DPT [14] 0.747 0.874 0.917 0.196 0.671

ST-CLSTM [24] 0.477 0.711 0.827 0.366 0.547
FMNet [19] 0.492 0.728 0.825 0.363 0.516
DeepV2D [17] 0.509 0.735 0.827 0.384 0.575
CVD [10] 0.518 0.741 0.832 0.406 0.497
Zhang et al. [25] 0.522 0.727 0.831 0.342 0.481
WSVD [18] 0.621 0.822 0.891 0.305 0.581
Robust-CVD [7] 0.673 0.848 0.888 0.284 0.447

Ours(Midas) 0.700 0.866 0.918 0.226 0.425
Ours(DPT) 0.741 0.876 0.926 0.205 0.411

Table 6: Comparisons on the 12 videos of Sintel [2]
dataset. We test the 12 videos that CVD [10] and Zhang
et al. [25] can produce results for fair comparisons.
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Figure 6: More qualitative results on natural scenes. The first image in each pair is the RGB frame, while the second is
the scanline slice over time. Fewer zigzagging pattern means better consistency.
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Figure 7: Qualitative results on Sintel [2] dataset. We compare the results of DeepV2D [17], CVD [10], Robust-CVD [7],
and Zhang et al. [25]. Without relying on test-time training [7, 10, 25], we conduct zero-shot evaluations on Sintel [2] and
achieve significantly better performance than those TTT-based methods [7, 10, 25].
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Figure 8: Qualitative results on DAVIS [12] dataset. We achieve better performance than prior arts on natural scenes.
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Figure 9: Qualitative results on NYUDV2 [16] dataset. We compare three different single-image depth predictors.



Recognition (CVPR), pages 3398–3405, 2013. 2
[6] Qingqiu Huang, Yu Xiong, Anyi Rao, Jiaze Wang, and

Dahua Lin. Movienet: A holistic dataset for movie un-
derstanding. In European Conference on Computer Vision
(ECCV), pages 709–727. Springer, 2020. 2

[7] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Ro-
bust consistent video depth estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1611–1621, 2021. 5, 7

[8] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian
Reid. Refinenet: Multi-path refinement networks for high-
resolution semantic segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1925–1934, 2017. 1, 2

[9] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyra-
mid networks for object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2117–2125, 2017. 2

[10] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen,
and Johannes Kopf. Consistent video depth estimation. ACM
Transactions on Graphics (ToG), 39(4):71–1, 2020. 5, 7

[11] Simon Meister, Junhwa Hur, and Stefan Roth. Unflow: Un-
supervised learning of optical flow with a bidirectional cen-
sus loss. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018. 1

[12] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
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