
PoseDiffusion: Solving Pose Estimation via Diffusion-aided Bundle Adjustment
– Supplementary Material –

Jianyuan Wang1,2

jianyuan@robots.ox.ac.uk

Christian Rupprecht1

chrisr@robots.ox.ac.uk

David Novotny2

dnovotny@meta.com

1Visual Geometry Group, University of Oxford 2Meta AI

Figure 1: Pose uncertainty visualizing multiple samples from p(x|I) conditioned on the same set of input images I. The
cameras predicted for the same frame are indicated with identical colors.

Abstract

In this supplementary material, we include (1) more im-
plementation details, (2) the visualization of the uncertainty
in the predicted camera poses, (3) additional ablation stud-
ies to justify our technical choices, (4) potential avenues for
future work, and (5) a video that offers a comprehensive
visualization of our method.

1. Implementation Details
In this section, we provide more method details. Ad-

ditionally, Fig. 2 illustrates a single training-mode forward
pass of PoseDiffusion.
Feature Extraction. We use the pretrained DINO ViT-
S16 model [1] as our feature extraction backbone. The
model and the weight are available in its public repository.
We first center-crop the input images and resize them to a

resolution of 224×224. Similar to [1], we then respectively
resize the images to 1, 1

2 , and 1
3 of the input resolution

(224), and average their features to achieve a multi-scale
understanding. The weights of the DINO model are opti-
mized during our training.

Representation and Canonicalization. We represent the

camera poses with
(
(f̂ i,qi, ti)

)N

i=1
. This representation

has a dimensionality of 8: 1 for focal length f̂ , 4 for quater-
nion rotation q, and 3 for translation t. As mentioned in
the main paper, for each sequence, we randomly chose one
input frame as the ‘canonical’ (pivot) one. Specifically, we
reorient the coordinate system of the sequence so that it is
centered at the pivot camera. This transformation results
in the pivot camera being positioned at the origin with no
translation, and with an identity rotation matrix. We explic-
itly provide this information to the network by utilizing a
one-hot pivot flag. Furthermore, in order to prevent over-

https://github.com/facebookresearch/dino

fitting to scene-specific translation scales, we normalize the
translation vectors by the median norm.

More specifically, given a batch of scene-specific train-
ing SfM extrinsics {ĝ1, ...ĝN} = Tj ∈ T , the transformer
T ingests normalized extrinsics gi = s((ĝ⋆)−1ĝi) which
are expressed relative to a randomly selected pivot camera
ĝ⋆ ∈ Tj , where s(·) denotes scale normalization which
divides the translation component t of the input SE(3)
transformation by the median of the norms of the pivot-
normalized translations. Focal lengths and principal points
remain unchanged in the whole process. To avoid the ex-
treme cases brought by canonicalization of outliers, we
clamp the input and estimated translation vectors at a max-
imum absolute value of 100. We also clamp the predicted
focal lengths by a maximum value of 20.

Architecture. For the input of the denoiser Dθ, we con-
catenate the input poses xit, the diffusion time t, and the fea-
ture embeddings ψ(Ii) of the input images Ii. Specifically,
we first project the concatenated input poses xit ∈ R8 and
steps t ∈ R to a feature vector with 96 dimensions (dim) by
a linear transformation. Next, we concatenate the 96-dim
feature vector with xit, t, and 385-dimensional image fea-
tures ψ(Ii), fed into the denoiser. The image feature em-
bedding ψ(Ii) comprises 384-dim DINO features and the
one-dimensional binary pivot camera flag pipivot ∈ {0, 1}.

The denoiser Dθ adopts a classic Transformer architec-
ture. We use the built-in implementation of PyTorch. Our
denoiser has 8 encoder layers and does not use decoder lay-
ers. The number of heads is set to 4, and the dimension of
the feedforward network is 1024. The output features of the
transformer are passed into a two-layer MLP to give the fi-
nal prediction. The hidden dimension of the final MLP is
128 and the output dimension is 8.

Diffusion Model. We use the PyTorch implementation of
DDPM [4]. We set the total number of diffusion sampling
steps T as 100. Following the default setting of DDPM,
the forward process variance (βt) increases linearly from
10−3 to 0.2. We empirically chose the “x0 formulation”
of DDPM because it exhibits a more stable training and
marginally better performance than predicting the noise
profile. The other hyperparameters were kept at their de-
fault values as per the utilized DDPM codebase.

GGS. The guidance strength s is set adaptively to s =

min(α ∥µt∥
∥∇p(I|x)∥ , 1.0), with α = 0.0001 to stabilize train-

ing. We skip the GGS process if no matches were discov-
ered between any pair of input frames.

Training. We train our model on 8 NVIDIA Tesla V100
GPUs, each with 192 images. For each sequence, we ran-
domly conduct color-jitter augmentation to all images in
each batch. Additionally, with a probability of 0.15, we ran-
domly turn each training image to its gray-scale form. To
ensure stable training, we rescale the optimization gradient

so that its norm does not exceed 1.0. The whole training
pipeline is implemented using PyTorch3D.
Evaluation. As mentioned, we align the predicted camera
poses to the ground truth ones by a single optimal similar-
ity before evaluation, which is implemented by Umeyama’s
algorithm [5]. The latter aligns the 3D locations of the op-
tical centers of the predicted cameras to the centers of the
corresponding ground truth cameras.
NeRF. The training and evaluation of our NeRF exper-
iments leverage the Implicitron framework. Each NeRF
model was trained using the default parameters of the
framework. We empirically verified that using a single focal
length comprising the average over all frame-specific focal
length predictions provides better performance. To ensure
reconstructibility of the evaluation sequences, we first train
NeRF with ground-truth camera poses and, select only the
ones where training/evaluation with 8/2 views gives PSNR
of 25 or better.
Fundamental Matrix Derivation. Epipolar geometry,
i.e. the relationship between points and lines of two cam-
eras observing the same scene, can be algebraically rep-
resented via the fundamental matrix F ∈ R3×3. In more
detail, denote (xi, xj) the parameters of the camera pair,
where x = (K, g) consists of intrinsics K ⊂ R3×3 and
extrinsics g ∈ SE(3). The extrinsics g can be further
expressed as a rotation matrix and the translation vector
(R ∈ SO(3), t ∈ R3). Using the latter, we define a 3 × 4
projection matrix M = K [R | t].

Assume a point p̃ in the camera plane defined by M i.
The ray back-projected from p̃ by M i can be written as
[M i]+p̃ + λC, where [M i]+ is the pseudo-inverse of M i,
and C is the camera center so that M iC = 0. The
scalar λ ∈ R parametrizes the ray. Setting λ = 0 and
λ = ∞ yields [M i]+p̃ and the camera center C respec-
tively. These two points will be imaged at the second im-
age plane M j as M j [M i]+p̃ and M jC. The epipolar line
lj is defined as the line connecting these two points, i.e.,
lj = (M jC) ×M j [M i]+p̃. The fundamental matrix F is
defined as the mapping from a point in the first image plane
to its corresponding epipolar line in the second plane, i.e.
lj = F p̃. Therefore, we obtain F = (M jC) ×M j [M i]+.
It is worth noting that the point p̃ is removed from the for-
mulation of F , because F is the relationship between two
image planes, and is constant for all the points in one image
plane. For more details, please refer to [2].

2. Ablation Studies and Analysis
Unless otherwise stated, all ablation studies are con-

ducted on CO3Dv2.
Camera Pose Uncertainty. One inherent advantage of
utilizing the diffusion model for camera pose estimation is
its probabilistic nature. It is well-known that few-view cam-

2

https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
https://github.com/lucidrains/denoising-diffusion-pytorch
https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html
https://github.com/facebookresearch/pytorch3d
https://github.com/facebookresearch/pytorch3d/tree/main/projects/implicitron_trainer

Figure 2: Overview of our architecture depicting a single training-mode forward pass.

Backbone ResNet50 (sup. [3]) ResNet50 (DINO [1]) ViT-S16 (DINO [1])

mAA(30) 63.1 64.3 66.5

Table 1: Performance of different feature backbones.
With other settings unchanged, we evaluate different fea-
ture extraction backbones on CO3Dv2.

era pose estimation is a non-deterministic problem, where
multiple pose combinations may be all reasonable for a set
of images. We provide a visualization in Fig. 1 to verify that
our method can provide several reasonable pose sets x for
the same input frames I.

Backbone. To explore the effect of upstream feature qual-
ity, we try different feature extraction backbones as shown
in Tab. 1. ResNet50 trained in a self-supervised man-
ner (DINO ResNet50 [1]) performs better than ResNet50
trained by supervised image classification [3]. The DINO
ViT model [1] shows the best performance.

Diffusion Steps. Differently from the original application
in image generation (which requires 1000 diffusion steps),
the results in Tab. 2 show that a moderate number of sam-
pling steps (T = 100) suffice. Therefore, we use T = 100
for all the experiments if not further specified.

Importance of Background. We have observed that our
method can produce favorable results even when the object
is nearly symmetrical. One plausible explanation for this is
that the model utilizes cues from the textured background to
estimate relative poses (which is valid and desired in SfM).
In order to test this hypothesis, we conducted an experi-
ment where we mask the background. In Tab. 3 the perfor-
mance of the model declines significantly when we replace
the background pixels with black, which supports our intu-
ition.

diffusion steps T 30 50 100 500

mAA(30) 62.5 66.1 66.5 65.3

Table 2: The effect of the number of sampling steps T .
We evaluate the value of the diffusion sampling steps T
from 30 to 500.

w/o background w background

mAA(30) 57.0 66.5

Table 3: Effect of background pixels on CO3Dv2. We
compare camera accuracy attained when letting PoseDiffu-
sion observe background pixels (w background) and when
using the foreground masks to mask-out the background
(w/o background).

3. Future Work

Looking ahead, we plan to extend the current frame-
work to a self-supervised manner, which would eliminate
the need for high-quality ground truth camera poses. This
would enable the model to take advantage of numerous In-
ternet data and expand its applicability to a wider range of
data distributions. Additionally, our method can serve as a
robust initialization for classic Bundle Adjustment frame-
works like COLMAP, which could further enhance the ac-
curacy of the pose estimates without the need for the costly
and complex iterative SfM process.

References
[1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-

3

ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 1, 3

[2] Richard Hartley and Andrew Zisserman. Multiple View Geom-
etry in Computer Vision. Cambridge University Press, ISBN:
0521540518, second edition, 2004. 2

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 3

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 2

[5] Shinji Umeyama. Least-squares estimation of transformation
parameters between two point patterns. IEEE Transactions
on Pattern Analysis & Machine Intelligence, 13(04):376–380,
1991. 2

4

