
Appendix: RFLA: A Stealthy Reflected Light Adversarial Attack in the Physical
World

Donghua Wang1, Wen Yao*2, Tingsong Jiang∗2, Chao Li3, and Xiaoqian Chen2

1College of Computer Science and Technology, Zhejiang University
2Defense Innovation Institute, Chinese Academy of Military Science

3School of Artificial Intelligence, Xidian University
wangdonghua@zju.edu.cn, {wendy0782,lichaoedu}@126.com, tingsong@pku.edu.cn,

chenxiaoqian@nudt.edu.cn

A. Implementation details

In this section, we first introduce the lower and up-
per bounds of the particle and velocity. Recall that
a particle q represents an optimization variable tuple
(x, y, r, α, red, green, blue, a1), where the lower bound is
(0, 0, 10, 0, 0, 0, 0, 0, 0, 0) and the upper bound is (H/2,
W/2, 0.4×min(W, H), 0.7, 255, 255, 255, 360) except for
the line. As for the RFLA-Line, the transparency α is set
to 1. The reason is that the modification of the clean im-
age caused by the RFLA-Line geometry shape merely has
a few numbers of pixels, even if the original pixels are re-
placed. Velocity controls the movement speed of particles:
a large velocity speed would early lead the particle to reach
the bound, while a small velocity makes the particle move
slowly, requiring more optimizing time. Thus, we set them
in terms of the concrete meaning of the variable. Specifi-
cally, we set the upper bound of velocity as follows: coor-
dination and radius of the circle are set to 5, 5, and 10; the
transparency α is set to 0.05; the color is set to 5; the angle
is set to 10, i.e., the initialization of velocity’s upper bound
is set to vupper = (5, 5, 10, 0.05, 5, 5, 5, 10). In contrast, the
lower bound is set to vlower = −vupper.

The initialization of the proposed method is significant to
optimization, which describes the variable that requires to
be optimized. Algorithm A1 describes the initialization of
particles and the corresponding velocity generation for dif-
ferent geometries. Specifically, we generate population size
S particles, i.e., the center o(x, y) and radius r of the cir-
cle. For each specific circle, we generate subpopulation size
Ssub geometries, which consists of α, red, green, blue, a1.
Note that we fixed the coordinate and radius when spawning
different topologies of the same geometrical shape at a spe-

*Corresponding Author.

cific circle. Therefore, we devise a novel variable to record
which circle can generate the optimal geometrical shapes
from an overall viewpoint, i.e., the qsgbest, which is defined
as

qsgbest = argmin
i∈S

Ssub∑
j=1

F (qi,j). (1)

Moreover, the defination of the qgbest and qpbest is ex-
pressed as follow

qgbest = arg min
i∈S,j∈Ssub

F (qi,j). (2)

qipbest = arg min
j∈Ssub

F (qi,j). (3)

After generating the particle, we use the Algorithm A2 to
generate adversarial examples. Specifically, we first obtain
the point on the circle by cosine and sine function with the
coordinate and radius and an angle, then calculate its sym-
metry point with respect to the center points. Repets until
generating enough points that the geometry shape required.
Then, we sort the point set to avoid engendering the inter-
cross edge. Finally, we use the OpenCV package to plot the
geometry on the clean image.

B. Experiment and result analysis
Model attention analysis can reveal how the attack al-

gorithm works. To provide a more complete visualization
comparison results of different attack methods. We use the
Grad-CAM tool to analyze changes in the class activation
map caused by different attack algorithms. Specifically, we
focus on the CAM of the original prediction class since the
predicted class of the adversarial examples is different from



Algorithm A1 Population Initialization
Input: mask M , population size S, sub population size
Ssub

Output: qi,j , vi,j , i ∈ [1, ..., S], j ∈
[1, ..., Ssub]

1: q ← []
2: v ← []
3: for i = 1, ..., S do
4: Randomly sample a radius r in [rlower, rupper]
5: Sample a center (x, y) of the circle by [r, xupper− r]

and [r, yupper − r]
6: while M(x, y) == 0 do
7: Resample a center (x, y) of the circle
8: end while
9: Random initialize vx, vy, vr from [Vlower, Vupper]

10: for j = 0, ..., Ssub do
11: Initialize a transparency α, a angle a1 and fill color

(red, green, blue)
12: Initialize velocity vα, va1

, vred, vgreen, vblue
13: if shape == line then
14: qi,j ← (x, y, r, α, red, green, blue, a1)
15: vi,j ← (vx, vy, vr, vα, vred, vgreen, vblue, va1

)
16: end if
17: if shape == triangle or shape == rectangle then
18: Initialize a new angle a1
19: Initialize a new angle velocity va2

20: qi,j ← (x, y, r, α, red, green, bluea1, a2)
21: vi,j ← (vx, vy, vr, vα, vred, vgreen, vblue, va1

, va2
)

22: end if
23: if shape == pentagon or shape == hexagon then
24: Initialize a new angle a1 and a2
25: Initialize a new angle velocity va2 , va3

26: qi,j ← (x, y, r, α, red, green, blue, a1, a2, a3)
27: vi,j ← (vx, vy, vr, vα, vred, vgreen, vblue, va1

, va2
, va3

)
28: end if
29: end for
30: end for

the original prediction class. Thus, the CAM is also dif-
ferent. In contrast, the changes in the CAM of the origi-
nal prediction can reflect the attack function. The compar-
ison result is illustrated in Figure B2. As we can observe,
the proposed method can disperse the CAM while the other
method can not. Take a careful look at the CAM of the pro-
posed method, the plotted geometry suppresses the original
CAM, where the region is the region with semantic content.
Therefore, the proposed method can obtain superior attack
performance.

In addition, we provide the complete transferability com-
parison result in Table B1. As we can see, the proposed
method achieves the best average ASR on both white-box
and black-box attacks. One possible reason for the better

Algorithm A2 Generate Adversarial Examples
Input: Populations q
Output: xadv

1: xadv ← []
2: for i = 1, ..., S do
3: for j = 1, ..., Ssub do
4: if shape == line then
5: (x, y, radius, α, r, g, b, a1)← qi,j
6: Get the point set p1, p′1
7: end if
8: if shape == triangle then
9: (x, y, radius, α, r, g, b, a1, a2)← qi,j

10: Get the point set p1, p2, p′1
11: end if
12: if shape == triangle then
13: (x, y, radius, α, r, g, b, a1, a2)← qi,j
14: Get the point set p1, p2, p′1, p

′
2

15: end if
16: if shape == pentagon then
17: (x, y, radius, α, r, g, b, a1, a2, a2)← qi,j
18: Get the point set p1, p2, p3, p′1, p

′
3

19: end if
20: if shape == hexagon then
21: (x, y, radius, α, r, g, b, a1, a2, a2)← qi,j
22: Get the point set p1, p2, p3, p′1, p

′
2, p

′
3

23: end if
24: Sorted the point set via the Minimum Points Dis-

tance algorithm
25: xadv ← call function fillpoly of OpenCV-Package

with the input x and particle q.
26: end for
27: end for

transferability of the proposed method is that the proposed
method can automatically locate the region of the model
decision that is common for different models. Moreover,
the proposed method is different from the full-pixel im-
perceptible perturbation, we generate adversarial examples
by modifying partial image regions with the transparency
color. Therefore, the image content of the modified region
by the proposed method is maintained, which is the main
difference compared to the patch-based attack (e.g., TPA
and DAPatch).



Clean RFLA-Line RFLA-Triangle RFLA-Rectangle RFLA-Pentagon RFLA-Hexagon

balloon

scabbard

hip

lynx

lynx

Figure B1. Visualization comparison of adversarial examples generated by RFLA on ResNet50.

Clean TPA DAPatch RFLA-LineBezier RFLA-Triangle RFLA-Rectangle RFLA-Pentagon RFLA-Hexagon

balloon

scabbard

hip

lynx

meatloaf

balloon

scabbard

hip

lynx

meatloaf

balloon

scabbard

hip

lynx

meatloaf

balloon

scabbard

hip

ounce

French loaf

parachute

pen

syringe

ounce

pizza

parachute

pen

pinwheel

cheetah

French loaf

parachute

holster

birdhouse

ounce

butcher shop

parachute

pen

birdhouse

ounce

butcher shop

parachute

wallet

handkerchief

cheetah

French loaf

Figure B2. Model attention analysis of adversarial examples generated by different methods on ResNet50.



Table B1. Comparison results of transferability of adversarial examples generated by different methods in terms of ASR (%) on ImageNet-
compatible dataset. Item indicates the white-box attack result, while the others are black-box results. The best results are highlighted with
bold.

method RN50 VGG16 DN121 RNX50 WRN50 SN AVG

RN50

TPA 66.1 50.4 42.7 41.6 38.6 55 45.66
DAPatch 74.3 47.4 44.5 48 31.9 58.6 46.08

Bezier 72.4 15.8 15.5 17.8 13.8 27.4 18.06
RFLA-LINE 76.9 14.5 15.5 14.1 14.1 27.7 17.18

RFLA-Triangle 98.1 32.2 33 29.4 30.6 48.5 34.74
RFLA-Rectangle 99.3 43.8 44.8 37.5 40 60 45.22
RFLA-Pengtagon 99.6 42.4 42.7 35.2 38.5 62.8 44.32
RFLA-Hextagon 99.5 43.7 46.9 38.1 44.2 62.4 47.06

VGG16

TPA 30 36 29 26 22 46 30.6
DAPatch 24.9 71.6 35 31.1 19.8 76.4 37.44

Bezier 12 77.7 12.8 12.9 9.3 29.2 15.24
RFLA-LINE 14.4 77.4 15.9 14.1 11.6 30 17.2

RFLA-Triangle 28.7 97.8 26.9 23 23.2 47.8 29.92
RFLA-Rectangle 35.1 99.1 30.1 28.1 30.4 52.3 35.2
RFLA-Pengtagon 41.4 99.1 40.7 33.1 36.7 61.5 42.68
RFLA-Hextagon 43.2 99.5 43.1 37.1 39 65.4 45.56

DN121

TPA 33.4 40.2 40 27.6 25.6 48.8 35.12
DAPatch 28.8 50.7 79.3 37.2 21.1 74.4 42.44

Bezier 16.6 14.4 74.1 14.1 10.6 27.5 16.64
RFLA-LINE 15.4 14.9 76.5 15.7 11.7 26.9 16.92

RFLA-Triangle 31.7 29.8 97.2 25.5 26.8 46.9 32.14
RFLA-Rectangle 42.7 41.6 99.2 35 36.6 62.3 43.64
RFLA-Pengtagon 45.2 43.1 99.2 34.8 38.5 60.3 44.38
RFLA-Hextagon 45.2 43.8 99.5 38 39.6 63.3 45.98

RNX50

TPA 28.9 36 26.7 25 20.4 45.4 31.48
DAPatch 32.3 52.5 42.3 73.7 26.4 28.8 36.46

Bezier 18.1 16.8 16.4 72.7 12.4 26.6 18.06
RFLA-LINE 17.6 15.5 17.5 75.7 14 27.1 18.34

RFLA-Triangle 37.8 34.9 33.1 97.2 33.7 50 37.9
RFLA-Rectangle 47.6 43.2 44.3 98.9 45.2 59.9 48.04
RFLA-Pengtagon 47.5 45 46.4 99.2 45.2 61.9 49.2
RFLA-Hextagon 50.8 44 47.6 99.5 47 63.9 50.66

WRN50

TPA 31.4 36.6 27.3 24.7 23.4 44 32.8
DAPatch 40.2 48.4 49.3 52.2 76.7 60.8 50.18

Bezier 19.4 17.7 14.6 18.7 69.6 25.1 19.1
RFLA-LINE 17.8 15 16.8 16.2 71.7 25.2 18.2

RFLA-Triangle 36.1 31.7 35.3 31.7 98.1 47.4 36.44
RFLA-Rectangle 45.3 41.1 43.3 38.8 99.1 58.9 45.48
RFLA-Pengtagon 48.9 41.8 46.8 40 99.4 61.4 47.78
RFLA-Hextagon 51 47.3 48.1 40.6 99.4 64.7 50.34

SN

TPA 29.8 28.5 29.7 23 22.5 44.6 26.7
DAPatch 17.3 30.1 23.8 22.2 14.3 56 21.54

Bezier 10.3 12.2 11.3 9.1 8 89.3 10.18
RFLA-LINE 10 11.5 12.5 8.8 8.5 89.2 10.26

RFLA-Triangle 16.6 19.7 17.8 14.6 15.9 99.5 16.92
RFLA-Rectangle 25.6 29.1 24.4 21.6 25 99.8 25.14
RFLA-Pengtagon 25.7 28.8 28.2 23 24.3 99.8 26
RFLA-Hextagon 26.9 29.3 30.2 21.8 25.4 99.8 26.72


