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A. Proof of Gumbel-Top2 Process
This section will prove that the sampling scheme pro-

posed in ROME-v2, Gumbel-Top2 technique,is equivalent
to sampling two different edges without replacement, with
the probability simplex pi =

exp βi∑
i′ exp(βi′ )

.
To complete this, we need to prove that each edge has the

same probability of being selected in these two schemes.
Let pi be the probability of choosing i-th edge among n
edges at one time. Without loss of generality, we suppose
that e1 is chosen.

i). We first discuss sampling two edges in order without
replacement. The cases that e1 is chosen can be divided
into two disjoint parts:

A) It is selected by the first choice, whose probability is p1.

B) It is selected by the second choice, and the probability
is

∑n
i=2 pi

p1

1−pi
, where p1

1−pi
is the scaled probability

when taking i-th edge away without putting it back.

In total, the probability of e1 being chosen is

p1 +

n∑
i=2

pi
p1

1− pi
. (1)

ii). Further, we discuss the Gumbel Top-2 scheme, in
which we sample n real numbers ϵk from U [0, 1] at first,
and the probability of choosing each edge ek is q̃k:

qk = log pk − log(− log ϵk), q̃k =
exp(qk)∑n

k′=1 exp(qk′)
.

(2)

There are also two cases where e1 will be chosen:

*Equal contribution, † Correspondence author.

A) q̃1 is the largest one among all edges, that is:

q1 > qj ,∀j /∈ {1}. (3)

By reformatting these inequalities, we have

ϵj < ϵ
pj/p1

1 ,∀j /∈ {1} (4)

Since each ϵi is sampled from U [0, 1] independently, we
can obtain the joint probability of all these events.

P =

n∏
j=2

P (ϵj < ϵ
pj/p1

1 ) =

n∏
j=2

∫ 1

0

∫ ϵ
pj/p1
1

0

1 dϵjdϵ1


=

∫ 1

0

n∏
j=2

ϵ
pj/p1

1 dϵ1 =

∫ 1

0

ϵ
1
p1

−1

1 dϵ1 = p1 (5)

So the probability of case A) is p1.

B) q̃1 is the second largest one only next to q̃i. That is

q1 < qi; q1 > qj ,∀j /∈ {1, i}. (6)

By reformatting these inequalities, we have

ϵi > ϵ
pi/p1

1 ; ϵj < ϵ
pj/p1

1 ,∀j /∈ {1, i}. (7)

Similar to case A), since each ϵi is sampled from U [0, 1]
independently, we can get the joint probability of all these
events.

P =

∫ 1

0

(1− ϵ
pi/p1

1 )

n∏
j /∈{1,i}

ϵ
pj/p1

1 dϵ1 =

∫ 1

0

(1− ϵ
pi
p1
1 )ϵ

1−pi
p1

−1

1 dϵ1

=

∫ 1

0

ϵ
1−pi
p1

−1

1 − ϵ
1
p1

−1

1 dϵ1 =
p1

1− pi
− p1 = pi

p1
1− pi

.

(8)

Enumerating i from 2 to n, the probability of case B) is∑n
i=2 pi

p1

1−pi
.

In all, the probability of e1 being chosen is p1 +∑n
i=2 pi

p1

1−pi
as well, which meets Eq. 1. Therefore, these

two schemes i) and ii) are equivalent.



Table 1: Comparison in RobustDARTS [8] reduced search spaces and 3 datasets. We report the lowest error rate of 3
found architectures. †: using the settings of [8] where CIFAR-100 and SVHN models have 8 layers and 16 initial channels,
CIFAR-10 models have 20 layers and 36 initial channels except that S2 and S4 have 16 initial channels. ⋆: using the settings
in S-DARTS [1], where all models have 20 layers and 36 initial channels. Others utilize the settings in RobustDARTS. The
best is underlined and in bold, the second-best is in bold.

Benchmark DARTS† R-DARTS† DARTS†
SDARTS-RS† ROME (ours)† PC-DARTS⋆ SDARTS-RS⋆ ROME (ours)⋆

DP L2 ES ADA v1 v2 v1 v2

C10

S1 3.84 3.11 2.78 3.01 3.10 2.78 2.68 2.62 3.11 2.78 2.68 2.62
S2 4.85 3.48 3.31 3.26 3.35 3.33 3.24 2.95 3.02 2.75 2.79 2.62
S3 3.34 2.93 2.51 2.74 2.59 2.53 2.65 2.58 2.51 2.53 2.65 2.58
S4 7.20 3.58 3.56 3.71 4.84 4.84 3.21 3.31 3.02 2.93 3.61 2.68

C100

S1 29.46 25.93 24.25 28.37 24.03 23.51 22.34 22.04 18.87 17.02 17.27 17.24
S2 26.05 22.30 22.24 23.25 23.52 22.28 21.95 22.12 18.23 17.56 17.09 17.06
S3 28.90 22.36 23.99 23.73 23.37 21.09 22.56 22.11 18.05 17.73 16.95 16.94
S4 22.85 22.18 21.94 21.26 23.20 21.46 21.33 20.44 17.16 17.17 15.99 16.18

SVHN

S1 4.58 2.55 4.79 2.72 2.53 2.35 2.33 2.27 2.28 2.26 2.07 2.14
S2 3.53 2.52 2.51 2.60 2.54 2.39 2.39 2.30 2.39 2.37 2.14 2.07
S3 3.51 2.49 2.48 2.50 2.50 2.36 2.58 2.51 2.27 2.21 2.14 2.07
S4 3.05 2.61 2.50 2.51 2.46 2.46 2.43 2.34 2.37 2.35 2.00 1.99

B. Detailed Discussion with Prior Works

B.1. Topology Disentanglement

DOTS [4] is related to our work that proposes to decou-
ple the operation search and topology search into two sepa-
rate stages. However, It is methodologically different from
ROME. We highlight some key features of ROME. 1) No-
Prior: To alleviate the collapse, DOTS uses a strong human
grouping prior as StacNAS, which classifies the operations
into two groups: parametric and non-parametric. ROME
uses no prior at all. 2) Single-phase searching with no ex-
tra hyperparameters: DOTS contains two phases: search
operations first, and then search topologies with the fixed
operations. It uses three carefully designed and tuned hy-
perparameters (T0, Tβ , TαOn

) to control the percentage of
two phases for different datasets (through our communi-
cation with the authors of DOTS). In contrast, ROME is
single-phase as DARTS and it requires no specific hyper-
parameters tailored for different datasets. 3) Memory effi-
ciency: ROME (2.3G) costs 1/4 of DOTS’s memory (9.5G),
since DOTS trains the whole supernet during the operation
search.

B.2. Gumbel Reparameterization in NAS

GDAS and SNAS are contemporary works based on
Gumbel-softmax reparameterization technique. Neverthe-
less, GDAS is memory-efficient since it sample and activate
a sub-set of candidate operations, while SNAS still belongs
to one-shot NAS since all operations participate the forward
and backward at each iteration in the search stage. This

work research on GDAS and point out that the performance
collapse issue also exists. We attribute it to two aspects, that
differs from the reason in DARTS: 1) the topology inconsis-
tency between searching and evaluation and 2) the stochas-
tic nature of sampling for candidate operations. Topology
disentanglement and gradient accumulation techniques are
proposed to stabilize the search process for GDAS. Our
method, ROME inherits the property of GDAS, i.e., low
GPU memory requirement and high speed for searching.
In comparison, SNAS has little relation to ROME. It re-
quires vast GPU memory like DARTS and still suffers per-
formance collapse issue.

B.3. Dynamic Network

DDW [7] is a kind of dynamic network whose topology
dynamically changes based on the input. In contrast, ROME
is a NAS method, whose topology is fixed after searching.
Unlike DDW that limited to some handcrafted architectures
e.g. ResNet, MobileNetV2, ROME supports more complex
topologies as DARTS’s search space. Moreover, DDW is
not memory efficient as it keeps the whole supernet in the
memory, while ROME requires much less GPU memory.

C. Further Experiments
C.1. Robustness evaluation on 12 hard benchmarks

We follow RobustDARTS [8] and evaluate the per-
formance and generalization of our method across three
datasets on S1-S4 search spaces, where DARTS severely
suffers from performance collapse. We independently
search four times under different random seeds for each
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Figure 1: GDAS fails on NAS-Bench-1Shot1 [9] on
CIFAR-10 when adding skip connection to the second
search space. Notice that nodes with no out-degrees have
no contribution to the output.
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Figure 2: Best normal and reduction cells discovered by
ROME-v1 on CIFAR-10.

benchmark and train the discovered models to report their
mean and standard variance performance. This process is
recommended by [5, 1, 8, 2] to fairly compare different
NAS methods. Table 1 reports the best performance, show-
ing that our methods robustly outperform RobustDARTS
with a clear margin across the 12 benchmarks. The best
cells found by ROME are shown in the next section.

C.2. Discussion on collapse behavior across popular
NAS benchmarks.

We argue that excluding an important operation for
search space can cause illusive conclusions. Specifically,
NAS-Bench-1Shot1 [9] suggests that Gumbel-based NAS
is quite robust. However, this observation is laying on the
basis that popular skip connections are not included in the
search space [6]. After adding skip connection into the
choices, we perform the GDAS search using their released
code 1. The best model found is full of skip connections,
which again supports our discovery of collapse issue in
single-path based NAS, see Fig. 1 and more in Fig. 14 in
the supplemental material. Instead, we do not suffer the
same issue while performing ROME in these search spaces
(see Fig. 15).

D. Figures of Genotypes
Genotypes of the discovered architectures by ROME are

illustrated in Fig. 2 - Fig. 15.

1https://github.com/automl/nasbench-1shot1
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Figure 3: Best normal and reduction cells discovered by
ROME-v2 on CIFAR-10.

c_{k-2}

0

dil_conv_3x3
2

skip_connect

3

skip_connect

c_{k-1} dil_conv_5x5
1

skip_connect

skip_connect

skip_connect

sep_conv_5x5

c_{k}

(a) GDAS [3]

c_{k-2} 0

skip_connect

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

skip_connect

skip_connect

sep_conv_3x3

sep_conv_3x3 c_{k}

(b) GDAS [3]

Figure 4: The architecture of normal cells searched by
GDAS and ROME on ImageNet under S0 search space.
Network searched by GDAS is dominated by skip connec-
tion and only obains 72.5% accuracy on ImageNet, while
our method is much more stable and achieves 75.5% accu-
racy.
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Figure 5: The best architecture found by GDAS on Ima-
geNet in S0. Skip connection dominate the searched archi-
tecture. Top-1 accuracy on the validation set is 72.5%.
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Figure 6: The best architecture found by ROME on Ima-
geNet in S0. No performance collapse occurs. Top-1 accu-
racy on the validation set is 75.5%
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Figure 9: ROME-V1 best cells (paired in normal and reduc-
tion) on SVHN in reduced search spaces of RobustDARTS.
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Figure 10: ROME-V1 cells (paired in normal and reduc-
tion) on CIFAR-100 in DARTS’s search space.
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Figure 11: ROME-V2 best cells (paired in normal and re-
duction) on CIFAR10 in reduced search spaces of Robust-
DARTS.
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Figure 12: ROME-V2 best cells (paired in normal and re-
duction) on CIFAR100 in reduced search spaces of Robust-
DARTS.
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Figure 13: ROME-V2 best cells (paired in normal and re-
duction) on SVHN in reduced search spaces of Robust-
DARTS.
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Figure 14: GDAS fails on NAS-Bench-1Shot1 [9] when
searching on CIFAR-10 in all three search spaces when skip
connection are added into choices. In each MixedOp, we
have three choices: {maxpool3x3, conv3x3-bn-relu, skip-
connect}.
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Figure 15: ROME-V2 resolves the aggregation of skip con-
nections on NAS-Bench-1Shot1 [9]. Notice intermediate
nodes concatenate their outputs as the input for the output
node, while some have loose ends and don’t feed to the out-
put node.


