
Appendix
This appendix is organized as follows:

• Section A.1 gives the details of existing OWOD meth-
ods for Section 3.1, where we first give the details of
detectors in Section A.1.1, and then give the Known-
FG matching method in Section A.1.2. Finally, we
give the details of Lcls and Lreg for Eq.1, in Sec-
tion A.1.3.

• Section A.2 gives the details of 10,000 pre-defined
bboxes and how we do postprocessing in the inference
stage.

• Section A.3 gives the formal definition and proof of
causalities for Section 4.

• Section A.4 provides some experiment implementa-
tion details of datasets splitting, evaluation metrics and
training schedule.

• Section A.5 shows additional results of experiments.
We first give some unknown-class instances detection
results by using our matching score in Section A.5.1.
Then we show some Open-world detection qualitative
results in each task in Section A.5.2.

• Section A.6 discuss the limitation and future work.
We first analyze the potential applying range of our
method in Section A.6.1. Then we discuss the current
large detection models and potential improvement with
our random proposals A.6.2.

A.1. Preliminaries Details
In this section, we first provide the details of Faster-

RCNN and DETR which are frameworks of existing
OWOD methods. Then we give a more detailed discussion
on the Known-FG matching. Finally, we give the details of
Lcls and Lreg used in training loss.

A.1.1. Detectors of Existing OWOD Methods

Faster R-CNN is composed of two modules. The first
module is a deep fully convolutional network that proposes
regions, and the second module is the Fast R-CNN detec-
tor that uses the proposed regions. The entire system is a
single, unified network for object detection. Using the re-
cently popular terminology of neural networks with ‘atten-
tion’ mechanisms, the RPN module tells the Fast R-CNN
module where to look. For DETR, two ingredients are es-
sential for direct set predictions in detection: (1) a set pre-
diction loss that forces unique matching between predicted
and ground truth boxes. (2) an architecture that predicts (in
a single pass) a set of objects and models their relation.

A.1.2. Known-FG Matching

The Known-FG matching is how to match the propos-
als with the ground truth. For Faster R-CNN, proposals
are considered as Known-FGs if they have IoUs exceed-
ing a threshold with ground truth. In that case, each ground
truth can match multiple proposals. For DETR, it denote
by {(bi, yi)}Ni=1 the ground truth set of objects (N is the
number of objects in the image), and {(b̂i, ŷi)}Mi=1 the set
of M predictions. Assuming M is larger than N , then pad
ground truth as a set of size M (i.e., {(bi, yi)}Mi=1) with ø(no
object). To find a bipartite matching between these two sets,
search for a permutation of M elements σ with the lowest
cost:

argmin
σ

M∑
i=1

Lmatch((bi, yi), (b̂σ(i), ŷσ(i))) (A1)

where Lmatch((bi, yi), (b̂σ(i), ŷσ(i))) is a pair-wise
matching cost between ground truth (bi, yi) and a predic-
tion with index (b̂σ(i), ŷσ(i)). Each element i of the ground
truth set can be seen as a (bi, yi) where yi is the target class
label (which may be ø) and bi ∈ [0, 1]

4 is a vector that de-
fines ground truth box center coordinates and its height and
width relative to the image size. For the prediction with in-
dex σ(i), they define probability of class ci as ŷσ(i)(ci) and
the predicted box as b̂σ(i). The Lmatch is defined as:

Lmatch = −1ci ̸=øŷσ(i)(ci) + 1ci ̸=øLreg(bi, b̂σ(i)) (A2)

where the first term is the cross-entropy and in the second
term Lreg is:

Lreg = λiouLiou(bi, b̂σ(i)) + λL1 ||bi − b̂σ(i)|| (A3)

where λiou, λL1
∈ R are hyperparameters.

A.1.3. Training Loss

For the Lcls in the Eq. (1), Faster-RCNN uses the cross-
entropy loss.

Lcls = −
∑

yi log ŷi (A4)

where the yi is the ith sample’s one-hot encoding of ground
truth category and ŷi is the probability prediction on each
categories. In order to solve the problem of sample imbal-
ance, focal loss [6], a improved cross-entropy, is a common
loss calculation method.

Lcls = −
∑

yi(1− ŷi)
γ log ŷi (A5)

where γ is the focusing parameter (a non-negative number),
and (1 − ŷi)

γ is a modulating factor which can make the
model focus more on difficult-to-classify samples during
training by reducing the weight of easy-to-classify samples.
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Figure A1: Our pre-defined inference bboxes.

For Lreg, Faster-RCNN uses the smooth L1 loss:

Lreg =

{
|x| − 0.5 |x| > 1

0.5x2 |x| < 1
(A6)

where x is the mean absolute error. The Lcls and Lreg of
DETR are detailed in A.1.2, which is the same as Eq. (A2)
and Eq. (A3)

A.2. Inference
In this section, we will give the details of our inference

stage including pre-defined bboxes and postprocessing.
Pre-defined bboxes. For each image, we have 10,000 pre-
defined bboxes as input for inference. The 10,000 pre-
defined bboxes are composed with 100 spatial locations, 10
scales and 10 aspect ratios. Specifically, for each bbox, we
first evently drawn from [0, 1] (stride is 0.1). These 4 num-
bers are the (center x, center y, height, width). We show
them in Figure A1. The Figure A1a shows that we pre-
defined 10 aspect ratios when fixing the position and scale.
In the Figure A1b, we fix the position and aspect ratio, and
pre-defined 10 scales. In the Figure A1c, we give the 100
pre-defined enter coordinates of the bboxes.
Postprocessing. As we can only input 500 bboxes each
time (our model is trained for 500 bboxes input), we infer
20 times on each image and merge all the results to get the
predictions of the 10,000 pre-defined bboxes. Finally, we
use non-maximum suppression to prune the bboxes at IoU
threshold of 0.6.

A.3. Theory
In this section, we will formalize the intuition of

“blocked” in Section 4 of the main paper, and prove that
RandBox learns the causal effect from D to Y using do-
calculus [11]. We will first provide the definition of d-
separation and instrument variable below.
d-separation. A set of nodes Z blocks a path p if and only
if 1) p contains a chain A→ B → C or a fork A← B → C
and the middle node B is in Z; 2) p contains a collider A→
B ← C such that the middle node B and its descendants are
not in Z. If conditioning on Z blocks every path between
X and Y , we say X and Y are d-separated conditional on
Z, i.e., X and Y are independent given Z (X ⊥⊥ Y |Z).

Instrumental Variable. For a structual causal model G, a
variable Z is an instrumental variable (IV) to X → Y by
satisfying the graphical criteria [10]: 1) (Z ⊥⊥ Y )GX

; 2)
(Z ̸⊥⊥ X)G , where GX is the manipulated graph where all
incoming arrows to node X are deleted.

One can verify that R is not an instrumental variable in
the causal graph of existing methods (Figure 5a), as it vio-
lates the first criteria with the unlocked path R ← D → Y
in GX . In contrast, R is an instrument variable in RandBox
(Figure 5b).

In do-calculus, the average causal effect from R to Y
is given by P (Y |do(R)). We will show the derivation
of the backdoor adjustment for P (Y |do(R)) in Figure 5b
using the three rules of do-calculus [9], and prove that
P (Y |do(R)) = P (Y |R), i.e., by learning to predict Y from
random R, our detector learns the causal effect.

For a causal directed acyclic graph G, let X,Y, Z and W
be arbitrary disjoint sets of nodes. We use GX to denote
the manipulated graph where all incoming arrows to node
X are deleted. Similarly GX represents the graph where
outgoing arrows from node X are deleted. We use lower
case x, y, z and w for specific values taken by each set of
nodes: X = x, Y = y, Z = z and W = w. For any
interventional distribution compatible with G, we have the
following three rules:

Rule 1 Insertion/deletion of observations:

P (y|do(x), z, w) = P (y|do(x), w),
if(Y ⊥⊥ Z|X,W )GX

(A7)

Rule 2 Action/observation exchange:

P (y|do(x), do(z), w) = P (y|do(x), z, w),
if(Y ⊥⊥ Z|X,W )GXZ

(A8)

Rule 3 Insertion/deletion of actions:

P (y|do(x), do(z), w) = P (y|do(x), w),
if(Y ⊥⊥ Z|X,W )G

XZ(W )
,

(A9)

where Z(W ) is the set of nodes in Z that are not ancestors
of any W -node in GX .

In our causal graph (Figure 5b), the desired interven-



Task 1 Task 2 Task 3 Task 4

Semantic split VOC [2] Outdoor, Accessories, Sports, Electronic, Indoor,
Classes Appliance, Truck Food Kitchen, Furniture

train images 16551 45520 39402 40260
test images 4952 1914 1642 1738
train instances 47223 113741 114452 138996
test instances 14976 4966 4826 6039

Table A1: Task composition in the OWOD evaluation pro-
tocol.

tional distribution P (Y |do(R = r)) can be derived by:

P (Y |do(r)) =
∑
d

P (Y |do(r), d)P (D = d|do(x))

(A10)

=
∑
d

P (Y |do(R = r), d)P (D = d) (A11)

=
∑
d

P (Y |R = r, d)P (D = d) (A12)

=
∑
d

P (Y |R = r, d)P (D = d|R = r)

(A13)

= P (Y |R = r) (A14)

where Eq. (A10) and Eq. (A14) follow the law of total
probability; Eq. (A11) uses Rule 3 given D ⊥⊥ X in GX ;
Eq. (A12) uses Rule 2 to change the intervention term to
observation as (Y ⊥⊥ X|D) in GX . Eq. (A13) is because D
and R are d-separated by ∅, i.e., D ⊥⊥ R.

A.4. Implementation Details

In this section, we give the details of how the datasets
splitted in 4 tasks, specific IoU threshold of evaluation met-
rics and the detailed training schedule for each task.
Datasets Split. The 80 classes of MS-COCO[7] are split
into 4 tasks and the number of images as well as instances
in each task are shown in Table.A1.
Evaluation Metrics. As described in Section 5, we give the
specific IoU threshold for 4 metrics here. The Known-mAP
(K-mAP) is at IoU threshold of 0.5, Unknown-Recall (U-R)
is at IoU threshold of 0.5 , Wilderness Impact (WI) is at IoU
threshold of 0.8 and Absolute open set error (A-OSE) is at
IoU threshold of 0.5.
Training Schedule. For task 1, the training schedule is 20K
iterations, with the learning rate divided by 10 at 15K and
18K iterations. For task 2,3,4, the training schedules are
15K iterations, with the learning rate divided by 10 at 10K
iterations. After task 2,3,4, we fine-tuning the model for
15K iterations, with the learning rate divided by 10 at 5K,
10K, 12K iterations. We calculate the LU in Eq.2 until 500
iterations in each task due to the matching score is not ac-

warm up U-AP U-AP50 U-AP75
1.98 4.46 1.57

✓ 2.57 5.25 2.23

Table A2: Unknown-class Average precision (U-AP) on
whether to use warm up operation.

ratio scale location U-AP U-AP50 U-AP75
5 5 20 2.33 4.47 2.10
10 10 20 2.56 5.20 2.22
10 10 100 2.57 5.25 2.23

Table A3: Unknown-class Average precision (U-AP) on
different inference bboxes.

curate at the beginning. All model are trained with a mini-
batch size 12 on 2 A100 GPUs.

A.5. Additional Results

In this section, we first give some results on unknown-
class detection in A.5.1. Then, we give the previ-
ously/currently known scores in A.5.2. In addition, we give
some open-world detection qualitative results in A.5.3.

A.5.1. Unknown-Class Detection

In Section 5, we give 4 metrics, i.e. the standard Known-
class mAP (K-mAP), recall of unknown classes (U-R),
Wilderness Impact (WI) [1] and Absolute Open-Set Error
(A-OSE) [8]. In this Section, we add a metric: standard
Unknown-class AP (U-AP) at different IoU threshold (e.g.,
U-AP50 is the unknown-class average precision at 0.5 IoU
threshol and U-AP is the average of U-AP[50,95]). This
can more intuitively measure both the recall and precision
of unknown-class instances. We calculate the LU in Eq.2
until 500 iterations in each task due to the matching score is
not accurate at the beginning. We call this operation ’warm
up’. In Table A2, we follow the same setting in Section
5.2 and show the results on with warm up operation or not.
The results show that our warm up operation can improve
the U-AP because after some warm up iteration, our match-
ing score can recall the Unknown-FG with higer precision.
Then, we show the U-AP on different inference Bboxes in
Table A3. The results show that increasing the number of
inference bboxes generally improves the U-AP due to the
increased recall on unknown-class instances.

A.5.2. Previously/Currently Known Scores

In Table A4, we give the previously/currently known de-
tails as supplementary to Table 1.



β
ORE [4] OW-DETR [3] RandBox

K-mAP U-R K-mAP U-R K-mAP U-R
0.05 55.8 4.3 59.3 6.9 61.3 9.4
0.1 56.0 4.9 59.3 7.5 61.8 10.6
0.2 56.4 5.3 58.5 8.2 60.2 11.5
0.5 56.2 5.8 57.6 9.1 59.5 11.6

Table A4: Additional results supplementary to Table 1.

A.5.3. Open-world Detection Qualitative Results

We give some open-world detection qualitative results in
Figure A2. This figure show a category incremental learn-
ing process from top to bottom (Task 1 to Task 4). Two
columns are two cases.

First, we look at the first column (case 1). We can see the
first row (Task 1), RandBox detects ’tv’, ’person’ and multi-
ple ’unknown’ instances. In these ’unknown’ instances, we
can known they are ’keyboard’, ’cup’, ’laptop’ and so on.
These ’unknown’ instances will be detected as known-class
instances as the increasing task number. And in the sec-
ond row (Task 2), there are still ’tv’ and ’person’ are known
classes. In the third row (Task 3), ’orange’ and ’banana’
were detected as known class after they were introduced to
RandBox in Task 3. Finally, in the forth row (Task 4), ’key-
board’, ’laptop’ and ’cup’ were detected as known class.
Similarly, we can see another case in the second column. In
the first row (Task 1), there are some ’person’ are detected
as known-class instances and multiple ’unknown’ instances.
In these ’unknown’ instances, we can known they are ’sink’,
’banana’, ’bowl’ and so on. In the second row (Task 2), the
’sink’ was detected as known class besides ’person’. In the
third row (Task 3), the ’banana’ was detected as known class
after it was introduced in Task 3. Finally, in the forth row
(Task 4), RandBox detected the ’bowl’ and ’cup’. These
results show how our RandBox implement the Open-world
detection.

A.6. Future Work
In this section, We first analyze the potential applying

range of our method in Section A.6.1. Then we discuss
the current large detection models (e.g. GLIP [5] and De-
tic [12]) and potential improvement with our Random pro-
posals A.6.2.

A.6.1. Applying Range

Our random proposals bridge the gap between incom-
plete training data and open-world detection by remove the
proposal bias. It can be potentially utilized as a plugin to
generate unbiased proposals when traditional proposal gen-
eration methods would confounded by the training data.
However, for the close-set detection, which the distribution
of training data and test data are same, random proposals
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Figure A2: Open-world Detection Qualitative Results.
Green: known. Red: unknown.

may not surpass the region proposal network or query-based
proposal.

A.6.2. Improvement for Large Scale Detection
Models

Large-scale models have gained widespread popularity
and efficacy in contemporary contexts. To be specific, large
open-vocabulary detection models like GLIP [5] and De-
tic [12] can detect all kinds of objects. They can also
achieve the open-world detection to some extent. These
models are strong because they use large scale training data.
Both GLIP and Detic form pseudo labels based on their pro-
posals, so the proposals are very important in the training
stage. Nevertheless, it is noteworthy that both models em-
ploy the Region Proposal Network (RPN) as the method-
ology for proposal generation. This choice may engender
a bias towards past training data in the resultant propos-
als. Similarly, we can introduce our randomness into their
training stage to make more explorations and generate more
abundant pseudo labels. This is a significant and work-
intensive topic. We will explore this and evaluate the ef-
fectiveness in our future work.
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