
Root Pose Decomposition Towards Generic Non-rigid 3D Reconstruction
with Monocular Videos (Appendix)

Yikai Wang1 Yinpeng Dong1,2 Fuchun Sun1B Xiao Yang1

1Beijing National Research Center for Information Science and Technology (BNRist),
State Key Lab on Intelligent Technology and Systems,

Department of Computer Science and Technology, Tsinghua University 2RealAI
{yikaiw,dongyinpeng,fcsun}@tsinghua.edu.cn, yangxiao19@mails.tsinghua.edu.cn

A. More Details and Discussions
In this part, we provide additional implementation de-

tails and discussions for our method and experiment.
Root poses during training. We provide Fig. 8 to com-

pare initial and final root poses, taking two fish scenarios as
examples. It is observed that the final root poses could re-
flect motion patterns given input video sequences. To kick-
start with a reasonable initial pose, we follow ViSER [6]
that adopts optical flow for learning approximate pixel-
surface embeddings (which are not category-specific). But
due to our proposed designs, our performance significantly
outperforms ViSER as compared in Fig. 4 (main paper).

Initial root poses Final root poses of two senarios

Figure 8. Illustration of initial root poses and final root poses with
corresponding canonical spaces. Best view in color and zoom in.

Visualization of canonical space. As mentioned in
Sec. 4.1 (main paper), we adopt 25 control points when
optimizing linear skinning weights. Fig. 9 provides two
examples of the learned models in the canonical space on
OVIS (fish), with also control points. By illustration, we
observe that these canonical models well capture the geo-
metric shapes of target objects. Besides, mostly, we find
that using 25/30 control points gets similar results. As a
result, we follow BANMo [7]’s default setting (25 control
points) for fair comparison.

Point sampling for registration. As mentioned in the
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Figure 9. Illustration of models in the canonical space on the OVIS
dataset with learned control points.

main paper, for registration, we sample points in the cam-
era space based on their τn values. Specifically, we keep
a per-frame buffer that contains a maximum of 104 points.
Old points are removed from the buffer if the maximum vol-
ume is exceeded. During training, we discard a ray if its all
τn values are lower than 10−3. We then sample points by
the probability of a Softmax output over τn values, with a
temperature of 0.01.

Decomposition into Sim(3) or SO(3). In Sec. 3.2 (main
paper), we leverage dense Sim(3) with scaling factors st to
deal with the scale change between different shapes. If we
substitute the dense field with SO(3) by disregarding st, we
find an accelerated convergence process when learning the
canonical space, but the root pose might be inaccurate when
encountering individual differences, such as the height dif-
ference.

Why using both decomposed poses and the root pose.
The deformation field introduces ambiguities that make op-
timization more challenging, especially when learning skin-
ning weights. We address this issue by maintaining the
global transformation, as described in our main paper.

Object occlusions. Compared with the multi-view 3D
reconstruction, the issue of object occlusion is less explored
when only given monocular videos. We demonstrate that
the framework could handle object occlusions. For a point
x∗ on the object surface of the canonical space, denote pt ∈
R2 as the projected 2D pixel that corresponds to x∗ given
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Figure 10. Illustration of an occlusion pixel that occludes a given
target object, in this case an orange and white cat.

the transformation Gt, attained by,

pt = ΠtG
−1
t M∗→t(x∗), (12)

where Πt is the video-specific projection matrix of a pinhole
camera.

We call pt an occlusion pixel if it is outside the annotated
2D mask, as illustrated in Fig. 10. In summary, an occlusion
pixel is the pixel that occludes a given target object, which
comes from a surface point x∗ by Eq. (12) yet locates out-
side the silhouette/mask. Given a target object, denote U as
a set that contains all occlusion pixels. We design an anti-
occlusion silhouette reconstruction loss1 defined by,

Lsil =
∑
pt

Apt /∈U

∥∥∥∑
n

τnpt
− Ipt

∥∥∥2, (13)

where
∑

n τ
n
pt

sums over sampled points along the camera
ray that emanates from the pixel pt, and Ipt

∈ {1, 0} is
an indicator function implying whether pt belongs to the
segmentation mask of the target object. Apt /∈U ∈ {1, α} is
another indicator function that equals to 1 if pt /∈ U other-
wise α, where α is annealing parameter that is initialized to
1 and decays during the training process.

Similarly, the method is relatively robust to out-of-frame
pixels since they are not mistakenly penalized by Eq. (13).

B. Loss Functions
In our main paper, we basically describe loss functions

that are specifically designed/adopted for our method. Here,
we detail other loss functions and the formulation of sum-
ming all loss functions together.

Following the standard pipeline [3, 8], we adopt a color
reconstruction loss Lrgb, computed as

Lrgb =
∑
pt

∥∥∥∑
n

τnct
(
Wt→∗(x

n
t )
)
− ĉt|pt

∥∥∥2, (14)

where xn
t is the n-th point emanates from the pixel pt; the

color ct(·) is defined by Eq. (2) in our main paper; and ĉt|pt

denotes the observed color at the pixel pt.
We further calculate an optical flow loss Lflow with a sim-

ilar formulation with existing methods [1, 7],

Lflow =
∑

pt,(t,t′)

∥∥∥F(
pt, t → t′

)
− F̂

(
pt, t → t′

)∥∥∥2, (15)

1Note that τn is only optimized by Eq. (13) while is temporally frozen
when minimizing other terms such as Eq. (5) in main paper and Eq. (17).

where the computed optical flow F(pt, t → t′) = pt′ −pt,
and the observed optical flow F̂(pt, t → t′) is estimated by
an off-the-shelf flow network, VCN-robust [5]. Following
BANMo [7], the pixel pt′ at time t′ is obtained by,

pt′ =
∑
n

τnΠt′

(
W∗→t′

(
Wt→∗(x

n
t )
))

, (16)

where Πt′ is the video-specific projection matrix (at time t′)
of a pinhole camera.

For optimization, we adopt a color reconstruction loss [3,
8] and an optical flow loss [7]. We optimize τn by applying
an anti-occlusion silhouette reconstruction loss by Eq. (13).
Similar to NSFF [1], we maintain the cycle consistency be-
tween deformed frames for the monocular reconstruction
with a 3D consistency loss given by,

L3D-cyc =
∑
i,n

τn
∥∥∥W∗→t

(
Wt→∗(x

n
t )
)
− xn

t

∥∥∥2
2
. (17)

The consistency loss Lcyc is composed by the 2D part
(Lrgb, Lflow, Lsil) and the 3D part (L3D-cyc), namely,

Lcyc = Lrgb + Lflow + Lsil + L3D-cyc. (18)

As mentioned in the main paper, the total loss function
L is summarized as

L =

K∑
k=1

L(k)
cd + Lela + Lcyc, (19)

where L(k)
cd is the chamfer distance loss function at the k-th

pyramid level, and Lela denotes the penalty loss for as-rigid-
as-possible movement regularization, both of which have
been introduced in the main paper.

C. More Visualizations
We provide Fig. 11 to evaluate RPD on reconstructing

ducks. The experiment is performed by jointly using a
4-second video and a 15-second complicated video with
heavy occlusions.

As mentioned in our main paper, for ease of optimiza-
tion, we let T̃t ≡ Tt for all points but learn the per-point
rotation matrix R̃t. Setting T̃t ≡ Tt assumes the camera
is at the roughly same distance to the object, which might
lead to failure cases when objects quickly running towards
the camera, especially for multi-object cases. To examine
the performance, we provided Fig. 12 which reconstructs
chickens. We observe that when a target object rapidly
changes its distance to the camera, the reconstruction be-
comes coarse and the performance is barely acceptable.

A failure case is depicted in Fig. 13, where the root pose
encounters a rapid change in the 3rd second, leading to am-
biguous pose estimation and confusion in distinguishing the
head and tail in the camera space.
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Figure 11. Illustration of reconstructing a duck.

2nd second 4th second 5th second

Figure 12. Illustration of reconstructing a chicken which quickly
changes its distance to the camera.

3rd second 4th second2nd secondzero second

Figure 13. Failure case: illustration of reconstructing a cat which
has a rapid pose change in the 3rd second.
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