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A. Proposition Proofs
Proposition 1 (Logit shifting). A sample with |y′c− p̂c| →
0 is easy to classify and |y′c − p̂c| → 1 is hard to classify,
where y′c = 1 for yc = 1, and y′c = 0 for yc = −1. sc as an
adaptive margin on the logit ac adjusts ∂Lc

∂ac
of category c,

thus addressing the imbalance of easy and hard samples.

Proof. As shown in Eq. (1), Focal loss or Asymmetric loss
adds the exponential weight with respect to pc as a modulat-
ing factor to adjust the gradients of hard and easy samples.{

L+ = −(1− pc)
γ+ log(pc), yc = 1,

L− = −pγ−
c log(1− pc), yc = −1,

(1)

where γ+ and γ− are the positive and negative focusing pa-
rameters, respectively.

While our SR adds an adaptive margin on logit to achieve
gradient adjustment. Lc with SR goes for L+ or L− based
on known yc, where L+ and L− are defined as

L+ = −log(p̂c) = −log(
1

1 + e−(ac+αsc)
), yc = 1,

L− = −log(1− p̂c) = −log(
1

1 + eac+αsc
), yc = −1.

(2)
Eq. (3) and Eq. (4) are the gradients of Lc without and with
SR for the logit ac, respectively.

∂L+

∂ac
= − 1

1 + eac
, yc = 1,

∂L−

∂ac
=

1

1 + e−ac
, yc = −1.

(3)


∂L+

∂ac
= − 1

1 + eac+αsc
, yc = 1,

∂L−

∂ac
=

1

1 + e−(ac+αsc)
, yc = −1.

(4)
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Figure 1. Gradient of BCE. The red and green solid lines represent
the gradients of a negative and positive sample in Eq. (3), respec-
tively. The red and green dashed lines are the negative and positive
gradients after logit shifting, respectively.

For a easy sample, |y′c − p̂c| → 0. When yc = 1, as
p̂c → 1, sc > 0 makes ∂L+

∂ac
(negative sign for direction)

smaller under the same logit in Eq. (4). When yc = −1, as
p̂c → 0, sc < 0 makes ∂L−

∂ac
smaller under the same logit.

As a result, easy samples receive less attention. In Fig. 1,
with a fixed sc, the gradient changes in different cases are
presented for a easy sample.

With a hard sample, |y′c − p̂c| → 1. For a hard posi-
tive sample, when the sample is misclassified and p̂c is very
small, sc < 0 makes the gradient larger. As p̂c → 0, sc gets
smaller, but the gradient becomes larger. It is similar for a
hard negative sample. Like Focal loss, SR lets the model
pay more attention to hard samples. sc is a adaptive value
which relies on different images and features of the same
image at different times.

Proposition 2 (Gradient differentiation). For a conven-
tional loss Lc (i.e., BCE, Focal loss or Asymmetric loss)
of category c, it propagates the same gradient ∂Lc

∂ac,wh
to

each location (w, h) on the c-th CSM. Whereas SR makes



the gradient of a location (w, h) ∈ Ωc = {(w, h)|ac,wh ∈
Topk(Ac)} discriminative with other locations.

Proof. A conventional loss Lc for category c is denoted as

Lc =

{
L+, yc = 1,

L−, yc = −1.
(5)

The gradient ∂Lc

∂ac,wh
of a location (w, h) on Ac is computed

as follows:

∂Lc

∂ac,wh
=

∂Lc

∂ac

∂ac
∂ac,wh

=
1

W ×H

∂Lc

∂ac
. (6)

The back-propagation gradient of the loss Lc is the same for
each location on Ac.

With the addition of SR, the logit changes from ac to
ac + αsc. Lc is set to BCE, and let gc = ac + αsc. The
gradient of Lc for ac,wh is denoted as

∂Lc

∂ac,wh
=

∂Lc

∂gc

∂gc
∂ac,wh

. (7)

The Eq. (7) is further rewritten as

∂L+

∂ac,wh
=

∂L+

∂gc

∂gc
∂ac,wh

=


(

1

W ×H
+
α

k
)(p̂c−1), (w, h)∈Ωc,

1

W ×H
(p̂c−1), (w, h) /∈ Ωc,

∂L−

∂ac,wh
=

∂L−

∂gc

∂gc
∂ac,wh

=


(

1

W ×H
+

α

k
)p̂c, (w, h) ∈ Ωc,

1

W ×H
p̂c, (w, h) /∈ Ωc,

(8)

where Ωc = {(w, h)|ac,wh ∈ Topk(Ac)} is a location
set. Pixels in the set Ωc have larger gradients than other
pixels, regardless of the gradient direction. Such optimiza-
tion makes the features of different locations discrimina-
tive. Features of pixels from the set Ωc are either empha-
sized more or suppressed more, which affects the saliency
of the object regions for the present labels. From Eq. (8),
for a positive sample of category c, the optimization ob-
jective is ∂L+

∂ac,wh
= 0, so p̂c → 1, then ac + αsc →

+∞ ⇒ sc → +∞. For a negative sample of category
c, if p̂c → 0 is obtained, then sc → −∞ is the condition
(sc → −∞ ⇒ ac+αsc → −∞). This confirms that adding
SR can solve our initial optimization problem.

B. Dataset Details
Pascal VOC 2007 dataset contains 9963 images with 20

semantic categories. 5011 images are divided into the train-
val set and the remaining ones are divided into the test set.
MS-COCO dataset covers 80 categories, 123k images are
divided into 83k training images and 40k validation images.

108, 249 images and 80, 138 categories are contained in the
Visual Genome dataset. We follow the works [3, 8] to select
the 200 highest frequency categories to generate a VG-200
subset. For a fair comparison, we utilize the same test set
containing 10, 000 images as [3]. The remaining 98, 249
images in the VG-200 are used as training images.

The OpenImages dataset contains 9 million (9M) train-
ing images, 41, 620 validation images, and 125, 436 test
images. In the main paper, 1.7 million (1.7M) images
with 19, 693 categories are downloaded as the training set
of OpenImages V3. There are 41, 620 validation images,
and 125, 436 test images. Non-annotated images and an-
notations of non-5000-trainable classes are filtered out, and
the remaining images and annotations are used as the final
dataset. The dataset has 5, 000 trainable classes and only
contains annotations verified by humans. In order to be con-
sistent with the training set of other methods, an additional
1.7 million images are downloaded, for a total of 3.4 million
(3.4M) images in the training set. The training set contains
less than 0.1% annotated labels, and the positive-negative
imbalance is serious in the known labels. It is used to verify
the effectiveness of our method further.

C. Evaluation Metrics
The mean average precision (mAP) over all categories

and average of the overall precision, recall, F1-measure
(OP, OR, OF1) and per-class precision, recall, F1-measure
(CP, CR, CF1) are adopted to evaluate the performance of
different methods more comprehensively. These metrics are
calculated as follows. For each class, AP is computed as

APc =
1

Ngt
c

N∑
k=1

Precision(k, c) · rel(k, c), (9)

where Ngt
c is the number of ground-truth images for the c-

th label, N is the total number of images. Precision(k, c)
is the precision for the c-th label when retrieving top k pre-
dictions, and rel(k, c) is an indicator function that is 1 if the
c-th label is a positive ground-truth at rank k. The mAP is
defined as mAP = 1

C

∑C
c=1 APc, where C is the number

of classes. Other metrics can be computed by

OP =

∑C
c=1 N

correct
c∑C

c=1 N
predict
c

, CP =
1

C

C∑
c=1

N correct
c

Npredict
c

, (10)

OR =

∑C
c=1 N

correct
c∑C

c=1 N
gt
c

, CR =
1

C

C∑
c=1

N correct
c

Ngt
c

, (11)

OF1 =
2×OP ×OR

OP +OR
,CF1 =

2× CP × CR

CP + CR
, (12)

where N correct
c , Npredict

c are the number of correctly pre-
dicted images and the number of predicted images for the
c-th label, respectively.



Figure 2. Qualitative results of complementing unknown labels
on several images from the MS-COCO training set. The column
of Ground Truth represents main ground-truth positive labels, the
column of Known Labels represents the positive labels after ran-
domly dropping the partial labels, and the remaining columns rep-
resent the labels complemented by different methods.

D. Implementation Details

The initial learning rate is set to 0.01 and divided by 10
after 15 epochs with a total of 20 epochs. In particular, for
better convergence, we add 5 extra epochs for Pascal VOC
2007. The exponential moving average with decay 0.9997
is utilized for models, like the work [1]. The input image is
resized to 448× 448 for training and evaluation. Weak data
augmentations include resizing images and flipping images
horizontally, and strong data augmentations include Resiz-
ing, Flipping, ColorJitter, GaussianBlur, and GridMask [2].
We set hyperparameters α = 0.5, k = 5, τ = 0.6 on Pascal
VOC 2007, MS-COCO, and Visual Genome. Based on the
experimental setup and evaluation metric of the work [5],
we conduct experiments on the OpenImages V3 benchmark
for our method, and also reproduce the results of the work
[1] in the main paper. We train the model on 8 Tesla V100
GPUs with a batch size of 64, epoch to 15, and scale of input
images to 224 × 224. Because of large categories and few
known labels in each image of OpenImages V3, pseudo-
labels impact the model significantly. Thus, we reduce the
weight of the unsupervised loss to 0.1.

E. Visualization

As shown in Fig. 2, the labels complemented by different
methods are presented. The models are trained by BN-BCE
(batch normalization for BCE), Focal loss, and our method
on the MS-COCO training set with 10% known labels. Un-
known labels are predicted by the models on several training
images. Compared to other methods, our method comple-
ments more labels. Some images do not have known labels

Figure 3. Heat maps on several images from the MS-COCO vali-
dation set. For each image, the top row is generated by the model
trained by BN-BCE, and the bottom row is generated by the model
trained by BN-BCE with SR. The object regions corresponding to
present labels are highlighted in red.

involved in the training, while our method still complements
many labels for them. We also find that the labels of some
difficult objects (e.g., handbag) are involved in the training,
but the model still has difficulty identifying them.

Heat maps are presented on several images from the MS-
COCO validation set in Fig. 3. The models trained by BN-
BCE and BN-BCE with SR on the MS-COCO training set
with 10% known labels generate these heat maps. As shown
in Fig. 3, our SR focuses more on the object itself and less
on the background region. The object regions correspond-
ing to present labels are more salient after the addition of
SR. SR enables the object regions to be focused more accu-



Architectures 10% 30% 50% 70% 90%
ResNet-101 77.2 80.3 81.8 82.1 82.7

VIT-B16 81.2 83.9 84.8 85.2 85.4
SWIN-B 82.9 85.1 85.5 85.7 85.7

EfficientNetV2-L 83.1 86.3 87.3 87.8 87.9
Table 1. mAP of our method with different backbones on MS-
COCO when different proportions of known labels.

Methods MS-COCO VG-200 VOC 2007
S-BCE 79.4 45.7 92.8

SR 82.5 50.2 94.3
Table 2. Comparison of mAP on different datasets in fully super-
vised mode.

rately, such as the microwave and oven of the first image.
SR enables multiple object regions of a present label to be
saliently focused, such as the car of the second image and
the airplane of the third image. SR also enables different
parts of the same object for a present label to be saliently
focused, such as the motorcycle in the fourth image.

F. Architecture Diversification
The current works on partial annotations are based on

ResNet-101, so we use this backbone for a fair compar-
ison in the main paper. To verify the effectiveness and
generalizability of our method, we conduct experiments
on some more sophisticated networks, including VIT-B16
[4], SWIN-B [7] and EfficientNetV2-L [9]. As shown in
Tab. 1, compared with the performance on ResNet-101, Our
method achieves better performance on these more sophis-
ticated networks. Our method does not rely on a specific
architecture and is a plug-and-play method.

G. Wider Applications
We further explore the possibilities of our method for

other tasks. The main paper discusses the multi-label clas-
sification task, so we expand the applications in its fully su-
pervised mode with only saliency regularization (SR) and
semi-supervised mode with self-training (ST).
Fully supervised mode. Our method works for the setting
where the known labels are positive and negative. When
the known labels are fully annotated, SR is still suitable for
fully supervised learning. Since the unknown labels do not
exist, consistency regularization (CR) loses its usefulness.
In Tab. 2, the effectiveness of SR is verified on MS-COCO,
VG-200 and VOC 2007. Compared with the performance
of standard binary cross entropy (S-BCE), the performance
of SR is significantly better.
Semi-supervised mode. In order to conduct semi-
supervised experiments, we divide the dataset MS-COCO.
According to different known proportions (e.g., 10%, 30%,
50%, 70%, 90%), we randomly select a subset of images in

Methods 10% 30% 50% 70% 90%
Supervised 66.7 74.5 76.9 77.9 78.1

Ours 72.6 77.9 79.4 80.1 80.5
Table 3. mAP comparison of our method and supervised-only
learning in semi-supervised mode.

Methods G1 G2 G3 G4 G5 All Gs
Latent Noise 69.4 70.4 74.8 79.2 85.5 75.9
CNN-RNN 68.8 69.7 74.2 78.5 84.6 75.2
Curriculum 70.4 71.3 76.2 80.5 86.8 77.1

IMCL 71.0 72.6 77.6 81.8 87.3 78.1
LL-Ct 77.7 79.3 82.1 84.7 89.4 82.6
CSL 74.6 75.8 77.6 81.8 90.1 80.0
CSL∗ 73.2 78.6 85.1 87.7 90.6 83.0
Ours 76.0 77.7 79.5 83.1 91.2 81.5
Ours∗ 78.9 80.9 83.7 86.8 91.4 84.4

Table 4. Results on OpenImages V3. The 5000 categories are
sorted in ascending order according to the number of available an-
notations for each category in the training set, and then divided
into 5 groups on average, that is, each group (from G1 to G5) con-
tains 1000 categories. All Gs contains all categories. The mAP
score of each group is compared between our method and existing
methods. The best results are marked in bold.

the training set, and the images in this subset are fully an-
notated. None of the remaining images in the training set
are annotated, and they participate in the model training to-
gether with the annotated images. Our method is suitable
for semi-supervised learning, where SR is for supervised
learning and CR is for unsupervised learning. When only
supervised learning with known labels, the obtained per-
formance is used as a baseline in Tab. 3. Compared with
the baseline, the performance of our method is significantly
better, which also verifies the effectiveness of our method
in multi-label semi-supervised learning.

H. Performance Details

The results in Tab. 4 are an extension of the results in
Tab. 4 of the main paper. Due to the limited number of
downloaded images in the OpenImages V3 training set, we
only conduct experiments on a part of its training set (1.7M
images) in the main paper. In Tab. 4, the reproduced CSL
and Ours represent results of the main paper, and CSL∗ rep-
resents results of the original paper [1]. Meanwhile, we also
introduce the state-of-the-art results of LL-Ct [6]. For a fair
comparison, we also use the same training set (3.4M im-
ages) for experiments. Ours∗ shows the effectiveness of our
method. It is observed that the performance gain from the
extra 1.7M images is small.

In Fig. 3 of the main paper, for the performance com-
parison of our framework with other methods, we show
the trend curves of mAP with various known proportions
on the different datasets. To compare in more detail, we



present the specific mAP for different methods in the differ-
ent known proportions on MS-COCO, VG-200, and VOC
2007 in Tab. 5. There are only the average mAP, OF1, and
CF1 in Tab. 1 of the main paper. For a more comprehensive
comparison, we introduce the average mAP, OP, OR, OF1,
CP, CR, and CF1 in Tab. 6. We can find that the perfor-
mance of our method continues to dominate in most met-
rics.
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Datasets Methods 10% 20% 30% 40% 50% 60% 70% 80% 90% Ave. mAP

MS-COCO

SSGRL 62.5 70.5 73.2 74.5 76.3 76.5 77.1 77.9 78.4 74.1
GCN-ML 63.8 70.9 72.8 74.0 76.7 77.1 77.3 78.3 78.6 74.4

PLCL 68.8 72.8 74.6 75.9 76.6 77.3 77.7 78.0 78.1 75.5
SPLC 64.1 72.0 75.3 76.7 77.1 77.5 77.3 76.9 76.9 74.9
SST 68.1 73.5 75.9 77.3 78.1 78.9 79.2 79.6 79.9 76.7
HST 70.6 75.8 77.3 78.3 79.0 79.4 79.9 80.2 80.4 77.9

SARB 71.2 75.0 77.1 78.3 78.9 79.6 79.8 80.5 80.5 77.9
SARB∗ 72.5 76.0 77.6 78.7 79.6 79.8 80.0 80.5 80.8 78.4

CSL 67.0 72.4 74.9 76.6 77.7 78.6 79.3 79.8 80.3 76.3
Ours 77.2 79.2 80.3 80.9 81.8 82.1 82.1 82.6 82.7 81.0

VG-200

SSGRL 34.6 37.3 39.2 40.1 40.4 41.0 41.3 41.6 42.1 39.7
GCN-ML 32.0 37.8 38.8 39.1 39.6 40.0 41.9 42.3 42.5 39.3

PLCL 40.5 42.9 43.9 44.5 44.9 45.0 45.1 45.2 45.3 44.1
SPLC 39.5 42.8 45.0 45.9 46.4 46.6 46.6 46.5 46.3 45.1
SST 38.8 39.4 41.1 41.8 42.7 42.9 43.0 43.2 43.5 41.8
HST 40.6 41.6 43.3 44.6 45.2 45.8 46.8 47.2 47.8 44.8

SARB 40.6 43.5 44.5 45.3 46.0 47.1 47.2 47.8 48.1 45.6
SARB∗ 41.4 44.0 44.8 45.5 46.6 47.5 47.8 48.0 48.2 46.0

CSL 40.7 43.7 45.2 46.2 46.8 47.3 47.8 48.2 48.5 46.0
Ours 46.7 48.2 49.0 49.5 49.8 49.9 50.0 50.1 50.2 49.2

VOC 2007

SSGRL 77.7 87.6 89.9 90.7 91.4 91.8 92.0 92.2 92.2 89.5
GCN-ML 74.5 87.4 89.7 90.7 91.0 91.3 91.5 91.8 92.0 88.9

PLCL 87.0 90.8 92.2 92.9 93.4 93.5 93.7 93.9 94.0 92.4
SPLC 79.4 86.2 89.9 91.8 92.6 92.9 93.3 93.6 93.7 90.4
SST 81.5 89.0 90.3 91.0 91.6 92.0 92.5 92.6 92.7 90.4
HST 84.3 89.1 90.5 91.6 92.1 92.4 92.5 92.8 92.8 90.9

SARB 83.5 88.6 90.7 91.4 91.9 92.2 92.6 92.8 92.9 90.7
SARB∗ 85.7 89.8 91.8 92.0 92.3 92.7 92.9 93.1 93.2 91.5

CSL 85.4 89.3 91.3 92.3 92.6 93.2 93.6 93.8 94.0 91.7
Ours 91.3 93.1 93.6 94.0 94.1 94.3 94.3 94.3 94.3 93.7

Table 5. The detailed mAP of our ST framework and current SOTA methods for multi-label classification with partial labels at known
labels of 10% to 90% on the MS-COCO, VG-200, and Pascal VOC 2007 datasets. The best results are marked in bold.



Datasets Methods Avg. mAP Avg. OP Avg. OR Avg. OF1 Avg. CP Avg. CR Avg. CF1

MS-COCO

SSGRL 74.1 86.3 64.8 73.9 82.1 58.4 68.1
GCN-ML 74.4 85.2 64.2 73.1 81.8 58.9 68.4

PLCL 75.5 83.6 67.8 74.9 79.2 63.1 70.2
SPLC 74.9 74.7 70.6 68.1 72.7 67.4 66.6
SST 76.7 86.3 67.7 75.8 82.8 62.6 71.2
HST 77.9 - - 76.7 - - 72.6

SARB 77.9 86.6 68.6 76.5 82.9 64.1 72.2
SARB∗ 78.4 - - 76.8 - - 72.7

CSL 76.3 73.8 76.5 75.1 70.9 72.2 71.5
Ours 81.0 85.3 73.5 79.0 83.3 69.4 75.7

VG-200

SSGRL 39.7 69.9 25.9 37.8 45.3 18.3 26.1
GCN-ML 39.3 64.1 28.2 38.7 44.6 18.2 25.6

PLCL 44.1 65.8 35.1 45.8 55.3 30.5 39.3
SPLC 45.1 57.0 48.3 43.9 49.6 43.0 41.1
SST 41.8 69.9 27.9 39.9 49.8 22.3 30.8
HST 44.8 - - 46.3 - - 37.9

SARB 45.6 70.1 33.2 45.0 56.8 27.8 37.4
SARB∗ 46.0 - - 45.1 - - 37.7

CSL 46.0 54.8 53.2 54.0 48.9 47.1 48.0
Ours 49.2 67.5 41.5 51.4 59.2 36.4 45.1

VOC 2007

SSGRL 89.5 91.2 84.4 87.7 87.8 81.4 84.5
GCN-ML 88.9 92.2 83.0 87.3 89.7 80.1 84.6

PLCL 92.4 90.3 86.3 88.3 87.3 84.9 86.0
SPLC 90.4 87.6 81.3 83.2 85.1 80.4 81.6
SST 90.4 91.3 85.3 88.2 88.3 83.0 85.6
HST 90.9 - - 88.4 - - 86.1

SARB 90.7 93.0 83.6 88.4 90.4 81.1 85.9
SARB∗ 91.5 - - 88.3 - - 86.0

CSL 91.7 82.9 89.1 85.9 80.2 88.5 84.1
Ours 93.7 93.2 85.1 88.9 91.5 81.6 86.2

Table 6. The average mAP, OP, OR, OF1, CP, CR, and CF1 of our ST framework and previous SOTA methods under the partial-label
setting on the MS-COCO, VG-200, and Pascal VOC 2007 datasets. The best results are marked in bold. “-” denotes that the corresponding
result is not provided.


